Skip to main content

A fast python library for finding both min and max value in a NumPy array

Project description

numpy-minmax: a fast function for finding the minimum and maximum value in a NumPy array

NumPy lacked an optimized minmax function, so we wrote our own. At Nomono, we use it for audio processing, but it can be applied any kind of float32 ndarray.

  • Written in C and takes advantage of AVX/AVX512 for speed
  • Roughly 2.3x speedup compared to the numpy amin+amax equivalent (tested on Intel CPU with numpy 1.24-1.26)
  • The fast implementation is tailored for float32 arrays that are C-contiguous, F-contiguous or 1D strided. Strided arrays with ndim >= 2 get processed with numpy.amin and numpy.amax, so no perf gain there.

Installation

PyPI version python 3.8, 3.9, 3.10, 3.11, 3.12 os: Linux, macOS, Windows

$ pip install numpy-minmax

Usage

import numpy_minmax
import numpy as np

arr = np.arange(1337, dtype=np.float32)
min_val, max_val = numpy_minmax.minmax(arr)  # 0.0, 1336.0

Changelog

[0.3.1] - 2024-08-15

Changes

  • Optimize (with AVX) the processing of contiguous int16 arrays. ~2.3x speedup compared to 0.3.0

For the complete changelog, go to CHANGELOG.md

Development

  • Install dev/build/test dependencies as denoted in pyproject.toml
  • CC=clang pip install -e .
  • pytest

Running benchmarks

  • Install diplib pip install diplib
  • python scripts/perf_benchmark.py

Acknowledgements

This library is maintained/backed by Nomono, a Norwegian audio AI startup.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy_minmax-0.3.1.tar.gz (13.0 kB view details)

Uploaded Source

Built Distributions

numpy_minmax-0.3.1-pp39-pypy39_pp73-win_amd64.whl (13.4 kB view details)

Uploaded PyPy Windows x86-64

numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (10.4 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

numpy_minmax-0.3.1-pp38-pypy38_pp73-win_amd64.whl (13.4 kB view details)

Uploaded PyPy Windows x86-64

numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (10.4 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

numpy_minmax-0.3.1-cp312-cp312-win_amd64.whl (14.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl (28.6 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl (21.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy_minmax-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (22.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.3 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-cp312-cp312-macosx_11_0_arm64.whl (12.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy_minmax-0.3.1-cp311-cp311-win_amd64.whl (14.5 kB view details)

Uploaded CPython 3.11 Windows x86-64

numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl (28.4 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl (21.3 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy_minmax-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-cp311-cp311-macosx_11_0_arm64.whl (12.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy_minmax-0.3.1-cp310-cp310-win_amd64.whl (14.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl (28.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl (21.3 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy_minmax-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-cp310-cp310-macosx_11_0_arm64.whl (12.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy_minmax-0.3.1-cp39-cp39-win_amd64.whl (14.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_x86_64.whl (28.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_aarch64.whl (21.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

numpy_minmax-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-cp39-cp39-macosx_11_0_arm64.whl (12.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy_minmax-0.3.1-cp38-cp38-win_amd64.whl (14.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_x86_64.whl (28.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_aarch64.whl (21.4 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

numpy_minmax-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (21.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy_minmax-0.3.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_minmax-0.3.1-cp38-cp38-macosx_11_0_arm64.whl (12.3 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file numpy_minmax-0.3.1.tar.gz.

File metadata

  • Download URL: numpy_minmax-0.3.1.tar.gz
  • Upload date:
  • Size: 13.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for numpy_minmax-0.3.1.tar.gz
Algorithm Hash digest
SHA256 3af3370161255298d8c5bc0b0f1d46bb09480ed7cd65f57037ebb49d2d322f31
MD5 3a4edd10eaeed63fe0565e6db0d99ff8
BLAKE2b-256 a4776334a40f97e2f5228897f9a5d595ab3071307b0d3f836d75740410de56b7

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 1388b2446596348df3b724f768a8e820c61a13e45e3b093fa08ae340372b4e3b
MD5 e4fe3335d9a4e9045ff99263fc6ed00a
BLAKE2b-256 eb40aa6e7058e9cd8bf075df3d8e60350c7ed265ddfa80fc97cd17749a013e22

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f2d0a44898fbd0e18dae7175f2dc449218f93f570e5ef757221928c128b25d4
MD5 24fd9670733e765f562657487d837426
BLAKE2b-256 232efff2df1c07a1ffa4766dd76a1594d2f5b5e1592b422f6ec89191e3155e79

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f23ed1a1050d55b8512cf698b8d12800d711bcc3bea1b02ee8be785703a7386
MD5 4110cd3b06b0f33069f74384118e6886
BLAKE2b-256 3a72669a6c2502dbe088d5131b944b0b55c9a6055c4201a781b4b27ac8c4cefd

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f17a8b8807f30b75145f28c006ce0b11630630853ad2311aa3b6de517e1bb331
MD5 6507856ba4191e91dfd8e7b13b6d48e6
BLAKE2b-256 274299888757a9e76634ecb1358a4fed29a2c645805e4baff356f1642f07ea29

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d57cdec9543d4e6812cdc92e347e149f825d8a9af60e79b4d9553672aa0d06c4
MD5 70bd59203ec24e16e3ba03a480290303
BLAKE2b-256 64b61c9645dcc49e549988f56af07e0ebefc231a1af04d78ea796c3b2fd3b73f

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bff63ab8acabba97e487f867fcb78250341e9b5676f03562b66fb51e61f5a74d
MD5 f37c3dab2eecae84614ee65d89899459
BLAKE2b-256 a9f8ee77d31b7f440d6a6c5c70aacb7c0ccb31f0582246fdd3bf46feae3bf8cd

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bcfc3eb1c047b68fdbf7ca5b89d5a509b12ec30e806d265c892611cbfc96047
MD5 72b599a5ac665907b14cb18822c9b325
BLAKE2b-256 8920bbb5dfcfc8a361888d1c1e752074dfe517d7b501d50910b00ad0c95d3bf4

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b2b1d1b7bce7a1bb8f7a9c5ba0d8ed8689b6974f9d6694f4e502aca307a4138c
MD5 63342a910e811b94b931ec112ff80a7b
BLAKE2b-256 def2e88479eea9c5d97b4bb33dc9d8ca1e1859c91ca8e659b0d4330549f00fcb

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b5305f61b4ae834973c01ff637d615a697f7c74732503bf80bbde7470b2dec17
MD5 f5b606eb458ed3538fdef704be9e24e7
BLAKE2b-256 0ad112d366f126dddf3d8a8bd443dc5695fa9eb33a9c14be2e329b616a298dec

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 421aae134bea2cfc20f21c74d753bc7269df973f4ab55ad7ef484a7c66df9290
MD5 5d3e2f72a5b18a50f4de6689235bb527
BLAKE2b-256 5e357f0ba34aef6aea0385bfb0c7a7c17a3a1af7b9698e07c16fb9613ebe3318

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 819e0e89914bdeea007a3ebec32e8717e885e4a5c7e94adab2597be54a4e7725
MD5 443edefb2d453f24d3dbe06c6aad8443
BLAKE2b-256 ea8d73381fa430ba705dae79b8477d1810c74fb1feed5fbb10e49a184178e838

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b2e07ed444c11f216068b978776d5c6548c2b128d50d6a149db4619265924d6
MD5 2c67c5d4431f06f36172f9af4878ed29
BLAKE2b-256 f3e6a0b712a1762adb4633a3eaa3d12f287e02e316d7991e669837f107e2db97

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f6db55f166f55cde0d8af3b02f30107ff46ce8786f96cbc5d0feeb863169e6d
MD5 bc54cadb145661f8c3587ebfce616a6a
BLAKE2b-256 1add75e46a2216818a5ea9a5baa02269350b2d3b74d9d0e20b48f8ffc5a6b9e8

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ae79f8ff73a9b61ba3a9753b36d101578f825e88d2de4e771669c855d533ff25
MD5 8c6278c7032ab723acc61e6cd04e3935
BLAKE2b-256 839c4084af15faa0ec5883cbb8956389cbe0a936b246f34b28162afbba115f06

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d0b4e3903e3cf628b703108698c6ab5bdde85298bbeebf0404fa518dd544c8dd
MD5 fe8cb17597cd3f093d48bb061e70127a
BLAKE2b-256 ddc6d4ee0d14cc77b28d596840e49950fe17ad039b06b7f207a2eaa55e3e1b33

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5d76b62368cedf5cc74b510408109c971ec21e63911594325ebb1474c2a32821
MD5 7ab672acff49b93b1be553c57e4a9899
BLAKE2b-256 540db7b3ec3843a027628a3c0973583430c2b41a4a19504039cbf0390f3b37a2

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 afde11ae5b683ea913f902905817671f8f7ce278f10a46f04a13963d31627b1b
MD5 2b25eee0ff6c58d0867d3559101205f1
BLAKE2b-256 9a117df892c22f22fb202f8164d83c4f92e77077495a31f901135dd2d612ae1d

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d518276b6acbc11c81725f5b70b0b91878514ae168f8eecba219fdcd6298dbd0
MD5 71967e17634e23d7f0f0819d7381ae70
BLAKE2b-256 fe2a54d115cce3eefa2ab8f248c0eb26589510a803179dc6f392b41aea2ff90e

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b050237c26705f67b97d0fa58df663738dcaa402ed8c6ab807c4c6e3f8beb878
MD5 f1cf7783b0d221c95cd8d4bbb36819c3
BLAKE2b-256 80ca5d8943a15a37ba88a6fd290ee823f73b796f5e952ce29d928237c40a014b

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 85b8d66e444a2967fbc0b1e12bec2e5dfb072c826c9895d6a36e8bae0c407361
MD5 21c100c1efb220c68a2e55e3c81dcd10
BLAKE2b-256 aa00fad38794b661e135a5d2dd8c671e70f34d02f595476064c66526f30c2014

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4a8aeb5770429877a4eb79fca8c7c987a64dadbd4ed2289b5626257787f74075
MD5 67021686faa066c85c7e8026c7de5f0d
BLAKE2b-256 c4cfb31b001ada7a620a48d0cd1316bdf0261549d955240c226132780697e51e

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 abd718e7fe3e3db3052777da8c9ebae77b7f39730bdc7ec76bfb408f08f9295c
MD5 563c962f198c97bc3a53fe378d12bd7d
BLAKE2b-256 77b8985dd7ef066c169a70d7e66512a730204d1e2efd4ce41fbfa69597053d31

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 8fa9b73068bacde63c3544f9f2a074cc55c0def722ee58ece256598a0053136a
MD5 325ae444c71c5e91ce46ddeac0d8e223
BLAKE2b-256 a2a7a48e88b04b71a4d4ea099a874e33b5c2c27ad114fed3f3ad4b64aee42f6d

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c658f948e7325f1c816c7fd6a355d937ca2c580234e3774372448a3e0074a24
MD5 664883ac923dbb1c3c28b7514a019029
BLAKE2b-256 a160f2f212579d61b765b3e289efe4a04330fbb7fac39089d794853cfd6cd592

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 67bdc7fceba8f825b99cf52d9a00c242704208497f5223b703ff59d178649ad0
MD5 5bb377d45e896cdc58ad32efe7f034b8
BLAKE2b-256 62ccbd6dc0d3bf9dcaebe07dd31ac501e77bf00077313e7a3ae6d163e90ad139

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 311cf7e8302669504fabd7ee033ce611110a1df74a506730d591b5fcc49f1913
MD5 6312c01aaeea1e323da86cb67525acc1
BLAKE2b-256 420c57067985d7a9cc8e923e00c8618c3489930c2d644c81b79353781dc6a3cf

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6c0119ac1e19a8ceee95687e2dbd36e0b4086a042bf45079247565b1e94aa364
MD5 5db6790f9a246fd5eead2cdfb4904077
BLAKE2b-256 549d6433e14cdbe37e131442c4b399a5b2340a156602a4d41d27e98a74a174f8

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 95616b5bff56797cdef61924894a92950b62a345e1730bd997d6a17fee576a5d
MD5 cbbd04a402603b7874d2f0d268d9855a
BLAKE2b-256 3fdc7df1b42f246c811a68ae17aac7c2d56da727536049624b8bc56c8666e049

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 38a3291862f5b30c30537cfe1079a91792f90ee908dc70e1f6a304fb28f9f498
MD5 e967060e706f71b4b74a105292d9f80c
BLAKE2b-256 3069fc512bf682b00e5ff9b2d745e45e95463192c83adbb600ba57b073e000a0

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5610f6276a2e71ecf94ccbc84cc5861456a8239b02954e47d35eae4f56f51591
MD5 8280a9ae42e70a48e19640126e3d93ec
BLAKE2b-256 29de17410a76cb0ea599909ac3cca6b1f1770a288544fd55e5fdbbdfa6d3d754

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9172dc55458617f8208a9fa452001ab789c10d98be8cf533419b4680ffa3b103
MD5 66960ac733b215f167a8f32c092c930c
BLAKE2b-256 6be739b2d9620bef595593badfc255145abf40759cc362abac262be5ccdb79df

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5a088c3141f8d5a08e0228bff3c5d31219f9d686355ac707fc9d0ab6ceeb6271
MD5 96aad116ca9864a306d903c0231cf231
BLAKE2b-256 11928fe6948683c8d54f0175063090b377e8f5e5565f06217497cb6cbefa9060

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c73c8774b841b53793120b8dbcb9c9c851c9960f7e8e18467ca8e5ea96abcf6f
MD5 e3f12802308c4acac28ef4ac4302a347
BLAKE2b-256 cf79cb81cfd58998454867ffd8c52000955341dc9a1bcd17ebb335c00776993f

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3594d9f7b090740bc0727bf7d828a104b9a35c8d12ef446a2c5ebb566d782a3a
MD5 c8106e4f6e8ad5da6640bc1beaffb5f6
BLAKE2b-256 7139084d09205e692555b3872081c4cc7921db33946d8900e4601d650e1542e8

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 503805e2e0b82f64ed0a92bc87d04c9296b788276faddc0d185c5d28ee26caf5
MD5 0817bd38ed385dddefe8eedc6949990b
BLAKE2b-256 74fab037ac5b7503716fe523477bb42b277a84b23005e64028c06e2bc83522d8

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47e6895f6cdb9a3924de56724a67d6b8782a7573a1b6f6eaf08511693b6d85ad
MD5 948606c98d20e081a954259a67658418
BLAKE2b-256 68c87cdd879ad0a50a1aed43078e326b43e23c6d159b949d97ac2ccbe44f9805

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c6a5610461658b3c2ba32124598f1f78edd876d5c855d2d5a9bacc2a2c5cd24
MD5 f89a5fcc6c148ce74c775b54021246c3
BLAKE2b-256 5194daa2a76f5071170be6dcca61065a610fb80991b70439f37f56ae608c3da0

See more details on using hashes here.

File details

Details for the file numpy_minmax-0.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_minmax-0.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 445264fa11204694e095a3139417a153105575eef1f06aae878e8e450f97cf36
MD5 2fcaf23adef9caf40bc607a5b4edbefc
BLAKE2b-256 2946e999323131a91099c2ba056892e0ba8ece5abdd865dbc111cf101ceb58a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page