numpy-minmax 0.4.0
pip install numpy-minmax
Released:
A fast python library for finding both min and max value in a NumPy array
Navigation
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: MIT License (MIT License)
-
Provides-Extra:
test
Classifiers
- Development Status
- Intended Audience
- License
- Programming Language
- Topic
Project description
numpy-minmax: a fast function for finding the minimum and maximum value in a NumPy array
NumPy lacked an optimized minmax function, so we wrote our own. At Nomono, we use it for audio processing, but it can be applied any kind of float32 ndarray.
- Written in C and takes advantage of AVX/AVX512 for speed
- Roughly 2.3x speedup compared to the numpy amin+amax equivalent (tested on Intel CPU with numpy 1.24-1.26)
- The fast implementation is tailored for float32 arrays that are C-contiguous, F-contiguous or 1D strided. Strided arrays with ndim >= 2 get processed with numpy.amin and numpy.amax, so no perf gain there. There is also a fast implementation for contiguous int16 arrays.
Installation
$ pip install numpy-minmax
Usage
import numpy_minmax
import numpy as np
arr = np.arange(1337, dtype=np.float32)
min_val, max_val = numpy_minmax.minmax(arr) # 0.0, 1336.0
Changelog
[0.4.0] - 2025-03-17
Changes
- Target numpy 2.x instead of numpy 1.x. If you still depend on numpy 1.x, you need an older version of numpy-minmax.
- Process some types of arrays with a negative stride in a scalar way instead of vectorized for improved compatibility
Removed
- Remove support for Python 3.8
For the complete changelog, go to CHANGELOG.md
Development
- Install dev/build/test dependencies as denoted in pyproject.toml
CC=clang pip install -e .
pytest
Running benchmarks
- Install diplib
pip install diplib
python scripts/perf_benchmark.py
Acknowledgements
This library is maintained/backed by Nomono, a Norwegian audio AI startup.
Project details
Unverified details
These details have not been verified by PyPIProject links
Meta
- License: MIT License (MIT License)
-
Provides-Extra:
test
Classifiers
- Development Status
- Intended Audience
- License
- Programming Language
- Topic
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Uploaded
PyPy
manylinux: glibc 2.17+ ARM64
Uploaded
PyPy
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
PyPy
macOS 11.0+ ARM64
Uploaded
PyPy
manylinux: glibc 2.17+ ARM64
Uploaded
PyPy
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
PyPy
macOS 11.0+ ARM64
Uploaded
CPython 3.12
Windows x86-64
Uploaded
CPython 3.12
musllinux: musl 1.2+ x86-64
Uploaded
CPython 3.12
musllinux: musl 1.2+ ARM64
Uploaded
CPython 3.12
manylinux: glibc 2.17+ ARM64
Uploaded
CPython 3.12
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
CPython 3.12
macOS 11.0+ ARM64
Uploaded
CPython 3.11
Windows x86-64
Uploaded
CPython 3.11
musllinux: musl 1.2+ x86-64
Uploaded
CPython 3.11
musllinux: musl 1.2+ ARM64
Uploaded
CPython 3.11
manylinux: glibc 2.17+ ARM64
Uploaded
CPython 3.11
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
CPython 3.11
macOS 11.0+ ARM64
Uploaded
CPython 3.10
Windows x86-64
Uploaded
CPython 3.10
musllinux: musl 1.2+ x86-64
Uploaded
CPython 3.10
musllinux: musl 1.2+ ARM64
Uploaded
CPython 3.10
manylinux: glibc 2.17+ ARM64
Uploaded
CPython 3.10
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
CPython 3.10
macOS 11.0+ ARM64
Uploaded
CPython 3.9
Windows x86-64
Uploaded
CPython 3.9
musllinux: musl 1.2+ x86-64
Uploaded
CPython 3.9
musllinux: musl 1.2+ ARM64
Uploaded
CPython 3.9
manylinux: glibc 2.17+ ARM64
Uploaded
CPython 3.9
manylinux: glibc 2.17+ x86-64
manylinux: glibc 2.5+ x86-64
Uploaded
CPython 3.9
macOS 11.0+ ARM64
File details
Details for the file numpy_minmax-0.4.0.tar.gz
.
File metadata
- Download URL: numpy_minmax-0.4.0.tar.gz
- Upload date:
- Size: 13.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6868137c0a982029fc89e1ff0625773c66dfc6e6c688810c0590b821b0f50a15 |
|
MD5 | 6bacd6dce593c8240ad555cb6e73bc96 |
|
BLAKE2b-256 | cf333956eefc6c6e779d0370250d14e4f215818d8a63efb062e4468221223c7b |
File details
Details for the file numpy_minmax-0.4.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 12.1 kB
- Tags: PyPy, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbf476d63a7c2ab94187fc0c479aadca42847286fa4642c9c2909fcb6588e469 |
|
MD5 | 1eee5e3a47969a42daeb0ff4ca8fccc1 |
|
BLAKE2b-256 | af09056b456fe945f1b438b25bdc21ae5898039d7536e396798d3016cc7747f9 |
File details
Details for the file numpy_minmax-0.4.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp311-pypy311_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 13.8 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bd07e1cce860d4e42d5892e4190defaaf2f820151b50019d479f88d23721f86 |
|
MD5 | b1cb0f49ed2a845989f5ba1b596f251e |
|
BLAKE2b-256 | b95c4cffb78dfeeb2b507a360773046abb92e3abb14b44a8b91e1d29872bb072 |
File details
Details for the file numpy_minmax-0.4.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.5 kB
- Tags: PyPy, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c67cdd369c1f0e0abd990415d9b8a3b5ed98c61ccbf232ce441a3757cf7d76eb |
|
MD5 | 91709d3823fdfb109bade0f1a8452e55 |
|
BLAKE2b-256 | 296eca66f16bf431d55eb5ddf92e5793840c2f4def8e5d1937bf6c8cc49a4cc0 |
File details
Details for the file numpy_minmax-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 12.1 kB
- Tags: PyPy, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d29f8ba01fb77d741bcca9c8149d7edecf6c4891897584dbc084f20c393532c3 |
|
MD5 | b8ccb2f2ed2c2ec2144dbe195b1c1662 |
|
BLAKE2b-256 | 7e67f498425032bac5214405ae4a47d50b5585e2938229c36d6342563aabe32d |
File details
Details for the file numpy_minmax-0.4.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 13.8 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5975c18f7e93f6b156ea83cac176c0b67eabcf0fefa654061988db0d61fa0e68 |
|
MD5 | 2a8295cbdf5cbf3f02d650a76222eece |
|
BLAKE2b-256 | a06bc7ab6871f6c82682e920873d6ab0f82a5ff858d48fcf12340af5b91779e0 |
File details
Details for the file numpy_minmax-0.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.5 kB
- Tags: PyPy, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9778d03499ccdf9a4dd63ab765aa323315d18d5c23458791080c89564322c4dd |
|
MD5 | cca2267475d924e56fef0134f012afab |
|
BLAKE2b-256 | 12a1427a341fa24502d539fa7fc05332317e5d01ed5b26ef2f512d941fedbacf |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 14.7 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 130eaca7ab8c3031925291d893f83ded2e0221520893412fd04d83d3148db9fe |
|
MD5 | e4083274d1f68af68dc8fbd1ccad7609 |
|
BLAKE2b-256 | bdbf0a1a84e7a6d33670690ee4118d8384dfdd61a5fe63d23c41cc1f0e2fb779 |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 27.8 kB
- Tags: CPython 3.12, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 78c62d7480ec428688610c25dd1cc486feda3e9caa9c29910036183e807bd021 |
|
MD5 | 149f06adc00c855d4d2b41ffd7fd2c2c |
|
BLAKE2b-256 | 2e96649d6b0a2f8c7dda15496f1fd59dfe163175b0064a5c64adee3b45eb1d22 |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 21.4 kB
- Tags: CPython 3.12, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2f4bb303cc1d6a02b4931206271f900981aedded04e6dab33a1103f2fc353ab |
|
MD5 | 2d8b44257700977bd07e3888d009c2e4 |
|
BLAKE2b-256 | e1d80c28440677ba701e84a9b27117fef601528159956ed84b56126edc220179 |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 22.0 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | da1fdaff749a5e64d6797fa31c143d5336930c960b87c6d0af7d3ea0f8c64496 |
|
MD5 | 12f269f30c5e742dcbf0f02805b5305a |
|
BLAKE2b-256 | 57d5f9d5ba862a5430085cf3bf4960d38e221875b81d1848e0922a83263cf153 |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 30.4 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ce8002d0212ce1a12560d3b5196b789e3ac9f1782f6221b8bec9f821332e8754 |
|
MD5 | 9569c66b2490fa1a82f857ba1784a5d5 |
|
BLAKE2b-256 | 58f4382baa238ef7fafa6e99d3566ed73e52ee0210afff6677c19bd6cbc7dafb |
File details
Details for the file numpy_minmax-0.4.0-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 12.4 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7dd1902e7b6097356e76b8386a9b84b5a80a32d83fe3cf64008e55cfb78f409 |
|
MD5 | df41efa676aae017c402169451ae4fd8 |
|
BLAKE2b-256 | ff33c1882ed7f8c795bedc53943ef17dd2bd4942ec6a20e75a35793b3672a966 |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 14.7 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b03994537672f6c8f737a4e934394dbd9d54a55e5846f8d8060357a142baf7e0 |
|
MD5 | 80a55c8c9f5150fcf0f0be89000ea1e3 |
|
BLAKE2b-256 | 7aba1fd8a7a832184044edca8e51474c6b86621794bdb1c03b094e639c5e9c1c |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 27.5 kB
- Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7deb75e5b338e8d49ced0b6b33ef5073658428bc66c0ca9b5b08d70326138c7f |
|
MD5 | 7546a06ec0ac9ec2ec846b4cb9c63d8a |
|
BLAKE2b-256 | 7ff86f0138b88482ceeaba4f4cf5f724657f7cbe28f9f0cacc79967e67887030 |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 21.2 kB
- Tags: CPython 3.11, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc4826bbce2293250ddcd7e42f4a80e8ad7f25bdecdb215c2ed36cb128ee85b6 |
|
MD5 | 9e9b43e338305574eaf72a08c30aba89 |
|
BLAKE2b-256 | 16d0aba12291dae6c94e7b642041a8c0d3c34909095883ca995161b8a49a5ad7 |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 21.8 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec001aba6e59aa6cefd6d0ff98279db16f943d3a63fa5677db6385596919945d |
|
MD5 | 1579de9d7188ae4269292ca74c0ee797 |
|
BLAKE2b-256 | 859c79b4ac01cf8a08fb624f24bbac071653f4ea53ca54579735a0a688d21fae |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 30.1 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0075395eff2441752a8101e7a4345c067e48b53ace1b90f1af18bc630bbb7d6 |
|
MD5 | ccba665938c6f87b0e38cb091ecfdc5f |
|
BLAKE2b-256 | cb8f7d64588666a5bec487ae69e4f8f431352304c17e17ee7262aa2bec8785c0 |
File details
Details for the file numpy_minmax-0.4.0-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 12.4 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b96443d59234564d81e180c055caac0e650f367f1a82d2578317761581a71eb8 |
|
MD5 | d170e7f0a9fcd1c4cdb79e1c8f85269c |
|
BLAKE2b-256 | 299f813fb967e51964249314b49881ebede625908bdc8607f771993a3e2bedaf |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 14.7 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d5cf37c98f2318f0e4f754a1ee279188d26b89dde21951f14aa85b7632933ba |
|
MD5 | 8ec65c9bf6a010e307b79184a8369c22 |
|
BLAKE2b-256 | 6e474ba9f52f34ebcbb9db515a6684a4c528451e4c36b3a5e27f88f8ebb39334 |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 27.5 kB
- Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 92eb5b06a0fe938fa222ee9f77a335efb44bd7966939799804b387e7c299f444 |
|
MD5 | 1e51b315812b1cee130dcb34a176683d |
|
BLAKE2b-256 | 629d09ffe34d7be699d223ee5df4035814b1b2a1fae304f95e9459a1591944df |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 21.2 kB
- Tags: CPython 3.10, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 493ebd64a805923d3933c19847520f0b5e8aabd8e14817beafd897e009694c9b |
|
MD5 | 9d50a5c59fbd4aa8c8f4344f70f07569 |
|
BLAKE2b-256 | e46ca4ad1162950f8aa9fb45292eab2cdf4762eda3cfeceb29bd507c04fbf4a7 |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 21.8 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a912d7eaca389b0a666f884c05e6797ec42ee2d5a07a817a256136bb94fb08a |
|
MD5 | 895a1c85a78d8d150b286e5535429545 |
|
BLAKE2b-256 | ab85ad2e9ad2b4a724c64b814b7ee3e529dca55f3bee274dca66e4cb7fb7a54a |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 30.1 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f632865a3cc2a383d574a29c1127d42af1cebcbdb7a249a7dc3c19b94b8b3836 |
|
MD5 | b432bed330f3ba7be2cede1b981354a1 |
|
BLAKE2b-256 | 211e6aae7c91e1008fb89c6bd2207348667d8b1ba2a0a02131bfd8da8c8c48b6 |
File details
Details for the file numpy_minmax-0.4.0-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 12.4 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e3313cb439e4b2fc1715d05dcf9ff66b415916cb15066a6bd1ff399ba5456ef9 |
|
MD5 | 450b30b875cdd10492cefc9b9b85b3a7 |
|
BLAKE2b-256 | 6f411610a438039b4128d6ad62273831c503c4378b9b7d8d22fcee3ede25932b |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 14.7 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9522228b872c048a44fcc7227f5bccab376582d5c277405a30a7af67631dc224 |
|
MD5 | d7295100f5c0eb97df678aeaf9f4f29d |
|
BLAKE2b-256 | 5509a33e2ad7b7693c2f635c22ab140d6636856984b77894d9ca9abf7ca74585 |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 27.5 kB
- Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1796d548767cc9387ba8532984c64fad85574cb66ab67ab65ba2625b5d466b1f |
|
MD5 | 23f046e13b32330896121de6fc8430e0 |
|
BLAKE2b-256 | 7fc3497d45b5496b955c7ea8e4a45c6e4ee286590ee89a25bdd344dd412c61b2 |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 21.2 kB
- Tags: CPython 3.9, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76a7c62d276641ec60df137a69b8a7160c94af102de8a311dce02687770aabe0 |
|
MD5 | 60fd1523c730b2e491f5bd7f5f858194 |
|
BLAKE2b-256 | 14f94160b051b9e829ffbdafc8bbfb9db2ed60bd2c32aed3587a4cf4e4cdc89f |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 21.8 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 13175c1bd73a165f5d3fa65ff7cdd6f6410cf84cab797b405f5e2b5e8dde8a48 |
|
MD5 | 17a31e058929ca90aeb506aa810e2abd |
|
BLAKE2b-256 | af4858b7d464058df3d15b96c18ab7b119358bc3f86e87f8c4e84e38371aad8e |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 30.1 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a58fa4c192d0a717a8c30dbfecb128f5010f6afff9ae752ae40f22311f921b5c |
|
MD5 | ba1ad8895aaaaa7af05500bafecb5da8 |
|
BLAKE2b-256 | af5cc355a90b346890f80098ff9f6916a26a43364491d526e7ea8aed835842cc |
File details
Details for the file numpy_minmax-0.4.0-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_minmax-0.4.0-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 12.4 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/6.1.0 CPython/3.11.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ae8d66de967808c8fef0775e9ae93e50909818ded5b2f35247f220bdc354b50 |
|
MD5 | f89ee85d9017c09f53304d2c50b8891b |
|
BLAKE2b-256 | 622efe0506364189799644d7b98f0e0b4ef7c865a08dc172b3a5f137933c9680 |