Add built-in support for quaternions to numpy
Project description
This package creates a quaternion type in python, and further enables numpy to create and manipulate arrays of quaternions. The usual algebraic operations (addition and multiplication) are available, along with numerous properties like norm and various types of distance measures between two quaternions. There are also additional functions like “squad” and “slerp” interpolation, and conversions to and from axis-angle, matrix, and Euler-angle representations of rotations. The core of the code is written in C for speed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Close
Hashes for numpy-quaternion-2018.11.3.1.0.41.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48f11507849c429cc78e30d906ea2adbc3359b46254c94c5a899aa7e6a4d7b38 |
|
MD5 | 0a16d3ec42e825497e9fdbdf49bf9baa |
|
BLAKE2b-256 | 3c5de58d67cd579061aa2c392dfeef510ba35b89d208d8ec689b0b0438c3632c |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fd71817096dc5dd2b2a03f50bd4d0cbcb96211bb5c51b7ba40e71ba6174e2a64 |
|
MD5 | 5024b1de541789d9d9a803e8ef69b2de |
|
BLAKE2b-256 | 843f3456dd543e33cbad0c51ea73cea875c75b8eb2460f73c9339df67685c3d5 |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e165fc4db83c906b71662d3b6fca487356225db8add662f0933ae62ef347e2cb |
|
MD5 | 8a18e50baee1fe780243b53524334c05 |
|
BLAKE2b-256 | be25108a911e338778d6b6d5fdbd3f001a169d4a631030e624b7b6fbbd70d038 |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e90106d2c7c3b2c282ca89852784974531316989a4b4fa49ec5fe0528cb41fc5 |
|
MD5 | 71f2fa34194e4e0efa608c51ceb40788 |
|
BLAKE2b-256 | 23e35a475c1d6a75b80562015c3c3940b890900b31bd882c078343fc9ca46928 |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aa85be9515f736ad64b2f31b8f14ef7efb22a9799eeb0e991f48be038772f364 |
|
MD5 | ffa8672f0cfc370441c8c866848c5d3a |
|
BLAKE2b-256 | 1f91e84dbce9b7dc1b938f468fc258d2dc36e400ccf978b7a57a6ad062672e6f |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dbb64e3ef1b1e57c880ae1fb63d44db4f24aa494366ee50ae51d1ea012f7c2f |
|
MD5 | 20459f78d5ae66f8a34673531829a44d |
|
BLAKE2b-256 | 9197d2ed6e81be9297695e56096f250ff609bee8c4f182810f5ae0f329f4c564 |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp35-cp35m-macosx_10_6_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0341a4080efd1312a8a760f38b66cfd7adfa72788df72fe6547bb5561337bd45 |
|
MD5 | a868bb80f7d5d6f48bd2ec4313dcb7a0 |
|
BLAKE2b-256 | 37b13d9ed167fea1ffba44037549ba17af7c10ba79a04981e1f077240cf1bc9e |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed625c2b64062542b6a7004427caddf6d65abbfb3c44163ceb83b0b7ebba4407 |
|
MD5 | 8f4b0224fe71f3138a933dcc9171fa65 |
|
BLAKE2b-256 | b602c933544eb3b0246d3da8fd84681abe0824553f12368ecd9b7128db209bf6 |
Close
Hashes for numpy_quaternion-2018.11.3.1.0.41-cp27-cp27m-macosx_10_6_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0ab86cca157beb36d46804b0cee601bd0a0993e8023bd0ad7931689ac81a3c1f |
|
MD5 | 46988a0f138a6258518c059fb3e346d5 |
|
BLAKE2b-256 | 705fa5e13f64bd8bd76ba1d4cbb00a82b45db87e3cde0e9891abd965269c41a3 |