A fast python library for calculating the RMS of a NumPy array
Project description
numpy-rms: a fast function for calculating a series of Root Mean Square (RMS) values
- Written in C and takes advantage of AVX (on x86-64) or NEON (on ARM) for speed
- The fast implementation is tailored for C-contiguous 1-dimensional and 2-dimensional float32 arrays
Installation
$ pip install numpy-rms
Usage
import numpy_rms
import numpy as np
arr = np.arange(40, dtype=np.float32)
rms_series = numpy_rms.rms(arr, window_size=10)
print(rms_series.shape) # (4,)
Changelog
[0.4.2] - 2024-07-13
Changed
- Optimize the processing of multichannel arrays
For the complete changelog, go to CHANGELOG.md
Development
- Install dev/build/test dependencies as denoted in pyproject.toml
CC=clang pip install -e .
pytest
Acknowledgements
This library is maintained/backed by Nomono, a Norwegian audio AI startup.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file numpy_rms-0.4.2.tar.gz
.
File metadata
- Download URL: numpy_rms-0.4.2.tar.gz
- Upload date:
- Size: 9.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd1e82fb85afe24e963ec0f3465b90308b870b2395ec5144983d9b6c3979bff7 |
|
MD5 | 43bf8dea633001718cd7aa9121f2d02a |
|
BLAKE2b-256 | b1d86fc4d9409ecc9ff84fb3c6ad43c48f11331f8f6f51accc412287a0b349fd |
File details
Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp39-pypy39_pp73-win_amd64.whl
- Upload date:
- Size: 12.5 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7bc7fe2df93cdf5d9b4478110320d14dadd8587c5846fcab006f370c37c3bcae |
|
MD5 | 6def76d35a062f64ea365bea91267303 |
|
BLAKE2b-256 | d3257a082b6d677e2267ffd14bde5e1e90b76fa77660c98d271581501b52012b |
File details
Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 10.4 kB
- Tags: PyPy, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e6fbb544f5d75552b35549047b339adc3d34e0da49deb8ba5201b732c8ee032 |
|
MD5 | 0e22ebb613ade71c128c183ce0b77825 |
|
BLAKE2b-256 | f1da7b48e3779593e213a58c98c63f97c14a66e1f6d8bccc296c541021691c95 |
File details
Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 10.2 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c81c5f194f4e879e70b6dce8e4ac8afb654fffc89c1a1e26695cc6bf643725c |
|
MD5 | db2903ee13b31f05449cae6b5fb47a34 |
|
BLAKE2b-256 | f452012d76bf2e1da4b84da14ccf168ca748b133ddad709e5d8031f2c3cc4165 |
File details
Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl
- Upload date:
- Size: 9.1 kB
- Tags: PyPy, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b1e9ed9d77fe5e5e253e3eef0d3c8e7ee0ca47ddb7a178a2e12f863979747be2 |
|
MD5 | b4a9856558e0584250ceaad6b2bdc960 |
|
BLAKE2b-256 | 365450039c6de41efd9b06fed689fe1fc8761e49d47417d1340b6e02c5c3ed8e |
File details
Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
- Upload date:
- Size: 8.5 kB
- Tags: PyPy, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 405e9591aeec05fe5ba5c1011e2d21b6b2aefc3043917f9ad57bc0b0a799f3a9 |
|
MD5 | 214a121f98013d54c3eaa8096c57db57 |
|
BLAKE2b-256 | cc1af09e64b26cb683b55341dd75631aed5d704febb578d6c19b5bf72c32704e |
File details
Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp38-pypy38_pp73-win_amd64.whl
- Upload date:
- Size: 12.5 kB
- Tags: PyPy, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3e77e1a9fe2ff13318679e73ed3cfdc2e857308bb6eb2e2facde099556b9ee1 |
|
MD5 | f7e710cc5ebb9144cd99e38004387a98 |
|
BLAKE2b-256 | 0add7514dce91f9ef95da4ec917f63c679b32cc665a0cf9760fcbba183716336 |
File details
Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 10.4 kB
- Tags: PyPy, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe67f568583708418ee54f27fb10029ccfad71048f6d6bd5a3f78c35330d0db2 |
|
MD5 | ffb9afea210cddf8ccd8110b87282c87 |
|
BLAKE2b-256 | 22a947c7c858864edf5a60ff228ca439fc693081954d129888d252dfd88ec6c3 |
File details
Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 10.2 kB
- Tags: PyPy, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 913d6336759d1255b275b04724aba20a6352ff971863d1e3dfce41681e7046ad |
|
MD5 | b2a7ce91297c74b95e7941a62100506b |
|
BLAKE2b-256 | 5d2c0056ca1f441a7a93defa059b8e3ba81470c807f460292cb8d13f21323755 |
File details
Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl
- Upload date:
- Size: 9.1 kB
- Tags: PyPy, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bc1996b8c04a000c7678775d28ff2bf9a064eef8deadd47d63d4a322592bb873 |
|
MD5 | 39514347589c1a0bd7eb0f848af286f3 |
|
BLAKE2b-256 | ff642e283b59dc8435cf22ce24e40c054485d4f0056523059089bf4baa283fff |
File details
Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
- Upload date:
- Size: 8.4 kB
- Tags: PyPy, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ada1351d0a4475338ea77463e85a8af129fa1096020ac2a7bfc3bc6c95b1196d |
|
MD5 | 7d4b3e1b7a0f9e49a656db2bc447b515 |
|
BLAKE2b-256 | 2d195a2842ffde725a4e0b5a2d2cd3ca9cc559c18d11c347d51664fd74ce236e |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 13.4 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ff66710c0214cf943aaa8303565cb05356364703495c4ba809c6744b07df29ce |
|
MD5 | 8e56fc6a40230b06c1f433e581ff2025 |
|
BLAKE2b-256 | ad7d266500ba47294274d300a848304b585a176dd5317700a92cd8ad5b0f01af |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 18.0 kB
- Tags: CPython 3.12, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9cabb0bff8046b6343c0d10b94759b00a0fd64dc13f2b238798287a352ff170 |
|
MD5 | 11c750030f7d666ecf3e9b0e4cdb9cc9 |
|
BLAKE2b-256 | 26daee976d3101e7fdfa74344413ad8c20a360b747422836916605feaf139894 |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 18.3 kB
- Tags: CPython 3.12, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c9a5163ac0effda16fda77aff04eeab65ebeaef4afc2e3fe08cd19cfef84ced7 |
|
MD5 | c38f22a0ade586459a7fe87e832bea9d |
|
BLAKE2b-256 | fdf925f74b5a8d89c0addb1a031bdb4e39758839c24aec6904fe5d8233692726 |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 18.2 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 885fde34172eb15fdc1aa804629b8cdeeb01e21fcd5b1c2a6d8a6516fc07f8dd |
|
MD5 | cd7bd98083f2d740d267cadc0dc32d50 |
|
BLAKE2b-256 | 1e464e9dc2432427f7d18a57773709e5d26ad5e1c115b1c47eb4dfd65216aa9e |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 18.0 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4a20f59a278eef196267858411fbd283e98373d2c6f989b02bcc33d785ac675 |
|
MD5 | affb37fec8c6972afd1bad960657b061 |
|
BLAKE2b-256 | cf6d740aae547cd6bb85250f47ddda636d3878cfe12f3a0558b13b9fb827c31d |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.6 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e4d2636920e2bd1a221da7385d5da8000b9fd7393a1de091fbe3586ad31e7853 |
|
MD5 | a9e86e0abdbf12d42033b076f002bf44 |
|
BLAKE2b-256 | 14ffacb1bc07ddbeb36f56f275601dcf2f60ce587666784c8b4894044505fc7c |
File details
Details for the file numpy_rms-0.4.2-cp312-cp312-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 10.0 kB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2dcaf1f257cea1b3fb28d58ad351de2184a5f23ff41234f262a237a000b8ce55 |
|
MD5 | c93f9e4828f4107bef969c1bb924b33c |
|
BLAKE2b-256 | 78b045d404281c521ad5689d966d95c5f6515250a1e9f9b171463026cf8dd404 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 13.4 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a22ec807e44a32cfea592a5e10bfa212b2d6d668e257c3880daa0c9fd066f7f |
|
MD5 | cc9e0be487cb5e4a79b9e0f30a5bbefd |
|
BLAKE2b-256 | 90aa870a760b24a9a8810f31c34ff2871b5c24aaa6e856347a56dbf6bf7e4da5 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.11, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15fd446e5b10447d6e97628f0c17cde7a3e7cd5f3b4f246072fb5f4cfd28642c |
|
MD5 | 3063f68ebb2f5c67026d1f1e39ae0977 |
|
BLAKE2b-256 | f76eb6494863fae6e835a087a16bf345a809fe629307b5c61d51a90088c42ac1 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 18.1 kB
- Tags: CPython 3.11, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2976156bb4356284e9367ff4f48ac25a0c512e5e481b359ce1f6dde6019c178 |
|
MD5 | 73de1506cc3d5d0a9411d7fed4427e90 |
|
BLAKE2b-256 | 449ff63baf559ba374d253c637dad8c6a78a6f2caf7e58c71643f5914af5f407 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 17.9 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1be36a85afe2d8201f8d032a8f825c9c54d9f96fd1f2dd85c34252dee5319533 |
|
MD5 | 18e5012555f28446655e3ffb4c7535e8 |
|
BLAKE2b-256 | ebb00696f6cb492f41f95d2dad68a1e7ad969e05d0d966284550c8a4343de4f3 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a67ddc18c2a23972da7b6de38cfcea30b54f3b9cefd2dba00f7a198509b3c909 |
|
MD5 | ec6ca716c724a1b3dbb203d91a630159 |
|
BLAKE2b-256 | 47ef8b59c0385040876cb3a94b727ef882dd496e3a9a379b826d73ab2befaec2 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.6 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 136f233cacc9c3b7534a0877ad0c54174fee59c7ee6b59ebcd64bf814abbcc25 |
|
MD5 | 2d7f12bb304d4e99a326218eef11b4bd |
|
BLAKE2b-256 | d8a46a56464a789a645e7144ce1871b32b82a57834893d19f8095730659cb4d5 |
File details
Details for the file numpy_rms-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 10.0 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cdd435a00597c849e213c615fb67f2be4bb85c1283ad37ad6bf7ca00bb44fd1f |
|
MD5 | 71f62ab09ccfea0020947be2e0a9d2e4 |
|
BLAKE2b-256 | 7bb5c44137d6b2a4455805fba078f33cc62cb03bc259c3af8ae5b1d137b9314e |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 13.4 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2e4d813f896f603737fa7aaab39a7a47c15c1848819dbe515fe4864bb78041d6 |
|
MD5 | eb43f4d6dd07022a623ad6f1e953515b |
|
BLAKE2b-256 | c504921b4ca08616b6baf64d90a8085de1800d614dd34f5f3e83965aa1aab4b6 |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.10, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 67d3c682574991f727b5f0838530c290224a825aab17df85a2cb50de2aea5270 |
|
MD5 | a2778d5018fee4b28cf534fae79990af |
|
BLAKE2b-256 | debf95a8c9e20dd3411084b2308fc164fa4931c4e1998b35d73d700325e835c3 |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 18.1 kB
- Tags: CPython 3.10, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a794f37c006e3a48e5d0702d379154618a9ff8a3f0a6cab92ac8453e4e0553a |
|
MD5 | 5aada85bd15ec00ba5c188ee769a448a |
|
BLAKE2b-256 | 86282b73f77e44ee594719a9fa58159d00944e3d04449bfd9ef0fc0856074b56 |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 17.9 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1733bac17dc77e3d3a535e4be9175d6360c50325196a851049a97e23c982f09e |
|
MD5 | 909edcb3986d3c07148fd9a617fe3977 |
|
BLAKE2b-256 | 54b9b783528addaf882f82c8924617e99a121d309f26a46b6b098743bbb5078c |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f9221e98c503a291a65ee4afff119c2e96432ac373b250d17c001c230cf9a86 |
|
MD5 | d1fbf369f15588a22379dbdaa60b2376 |
|
BLAKE2b-256 | 20a421aec9c5bdc3ff6ad52159ebfb163bc858e820740970223da5837e89a7fb |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.6 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b836d6c7a5bc11e6373abfc74f4d77ad1f1b4260c136e5c067357fe50a373d2 |
|
MD5 | 621e46de6cf48f7b0f846d36d92950c6 |
|
BLAKE2b-256 | b38d9561f7bb96aba3877a56453e3dfcdd024eb894835a7b2c1bc288142c68d7 |
File details
Details for the file numpy_rms-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 10.0 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f872b70578b8db26255d2334391bb60ff30139a8013392531da17713e9962cf |
|
MD5 | 85e2e745ca1e66de1cafd2782d3d9205 |
|
BLAKE2b-256 | 8ff6a3af8c08f672de135f7e53fd0fd99947df919f3735398fda3d79e1fe6692 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 13.4 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6308b0f00025ebeea63c1876a0815e026afb09eb47a8f109cbd2fc71c8abb501 |
|
MD5 | 34827ec991e8a683dc89552dd34dda22 |
|
BLAKE2b-256 | d846b2ea5a3d2da2ec6fb8e12061197edc2ae8ab99bb81ffc70d62ef2b2f57c0 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.9, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a0f97949cf9198fcbe849c0cf90a8ebaf5192916b84a39b90ec26564d889bab5 |
|
MD5 | b2a258095d8584070a92bd7426732f24 |
|
BLAKE2b-256 | 49d42fda5e7ded2b202e9dfbdd9df5bd31f148c7dcb42904f0572a518ba3f1c4 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 18.1 kB
- Tags: CPython 3.9, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 18000baa61aec01f9930a993cc8893c6dca0b0dcfd198e6bb180a898a0ac7264 |
|
MD5 | 16dde0193f72b60174ed8355f352b960 |
|
BLAKE2b-256 | d92c6da6d7d183a15e3b9661e26efb0790e51cdd531d2de621f5e5c23c7fb5ae |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 17.9 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9bee29a0f5fff0d5b5a94d001a64163a4114dd4181721b53f46592aa19726422 |
|
MD5 | ba8d97a25a65cee4764066a65388b8f7 |
|
BLAKE2b-256 | 9bb7c1784377f28501bf03018d3bc85697f66b557f1af10e250573bd1782cf95 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 17.7 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | db118e117ff51c3467aba7f4d12c87f129f65b5d2216f9640621838711fe72dd |
|
MD5 | 641d6bcda6aa48c9b394d14c37405282 |
|
BLAKE2b-256 | 1a400ebb3da4d7d6be2ce03f909bc2fc48ce23f66e6d6e3c8c968ad304481060 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.6 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b609c9f6211a2667f336eaca717371f305cd142505bc737bef66f3314f923c50 |
|
MD5 | 525b4079f7e30c2d0b8eb4e284c22bcf |
|
BLAKE2b-256 | 6b8b63f157bccd003f6bf0f17089c1413888d3872f76eab45ad5a17444f4fc37 |
File details
Details for the file numpy_rms-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 10.0 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 660a8c46fd226140ac447ccb480c66b8b8ad207326a03db77063cfa645976b40 |
|
MD5 | c3783605ff1b77e8865478b9144a271f |
|
BLAKE2b-256 | c1ca2f9fad3ae75f528dcdaf702240985bf577b92ecc8c265a8923778bcfdc7b |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 13.4 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53ac4b32a819c06ab005213b358f74866dec40da30404be00250a661ed242657 |
|
MD5 | eb7433ff63bcd83e9949d9618db3d1e2 |
|
BLAKE2b-256 | 144f22170154b9a33c87feecb20c7ad96319dc8ec5726b196be59004490bf717 |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_x86_64.whl
- Upload date:
- Size: 17.8 kB
- Tags: CPython 3.8, musllinux: musl 1.2+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d01e1021e79affc2cf0fb1439247250728c40e354bc0b68357841f6a5fa9a84c |
|
MD5 | 537e54d1a7595a391b5d9e061696e6a9 |
|
BLAKE2b-256 | b25dd45b17afa861055d98fd2cdee4fbccbbc3c63a27d72c5a66c878e0536a51 |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_aarch64.whl
- Upload date:
- Size: 18.2 kB
- Tags: CPython 3.8, musllinux: musl 1.2+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 952ae4c9895745457f0611742caaba318066498e365a2f52d415928c664b72ab |
|
MD5 | 528dec3ca2ed42a119aa1c319da1afe9 |
|
BLAKE2b-256 | 0ad26798ba06198711f9e65f6f33436c3240318c08602d9d40b732638bf5e2a2 |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
- Upload date:
- Size: 18.0 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 90dbd92c987fdd28536ef26128cd075d774a04fa5cfdf68f415bf0cacb6c0fd4 |
|
MD5 | d13d654254add5b6e2177417def092e0 |
|
BLAKE2b-256 | 0862573b5c0d22b7213048b5ac2f1f352e4c4c3b87966e13aa0ba196405042ee |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 17.8 kB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64, manylinux: glibc 2.5+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 793744df9d60daa7d58b3c7b62136bef127b49a8da5f71429ab65164082e2682 |
|
MD5 | 632d87443c2c048817c15a1b7090cbb0 |
|
BLAKE2b-256 | 7db69879beea535ce542ea9a0e153bb661fa27d5ff2b25e183d1c92ca7163340 |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 10.6 kB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 10021133c6ef2bdd07f1978c263ee186f5e9d970bded77fe7d93c8b13322dd34 |
|
MD5 | 601147dd8d4f01266cf04979f1e1e947 |
|
BLAKE2b-256 | f27f4a2ba41e3e5c17c9bfc297d2550fd0e8fdf192deef63a9409ce73b12709e |
File details
Details for the file numpy_rms-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpy_rms-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
- Upload date:
- Size: 10.0 kB
- Tags: CPython 3.8, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.19
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5eb62c650861343641362b192df384716c8bac0c0ab63e9626a38e7e4e8f90e4 |
|
MD5 | 6f2147937eb8edaac507e2f9761b0919 |
|
BLAKE2b-256 | d92ecc7e244a9e2e9b9f1ce66a9c2282f771fdc18ff64d48e10942159084ec89 |