Skip to main content

A fast python library for calculating the RMS of a NumPy array

Project description

numpy-rms: a fast function for calculating a series of Root Mean Square (RMS) values

  • Written in C and takes advantage of AVX (on x86-64) or NEON (on ARM) for speed
  • The fast implementation is tailored for C-contiguous 1-dimensional and 2-dimensional float32 arrays

Installation

PyPI version python 3.8, 3.9, 3.10, 3.11, 3.12 os: Linux, macOS, Windows CPU: x86_64 & arm64

$ pip install numpy-rms

Usage

import numpy_rms
import numpy as np

arr = np.arange(40, dtype=np.float32)
rms_series = numpy_rms.rms(arr, window_size=10)
print(rms_series.shape)  # (4,)

Changelog

[0.4.2] - 2024-07-13

Changed

  • Optimize the processing of multichannel arrays

For the complete changelog, go to CHANGELOG.md

Development

  • Install dev/build/test dependencies as denoted in pyproject.toml
  • CC=clang pip install -e .
  • pytest

Acknowledgements

This library is maintained/backed by Nomono, a Norwegian audio AI startup.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy_rms-0.4.2.tar.gz (9.6 kB view details)

Uploaded Source

Built Distributions

numpy_rms-0.4.2-pp39-pypy39_pp73-win_amd64.whl (12.5 kB view details)

Uploaded PyPy Windows x86-64

numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl (9.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (8.5 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

numpy_rms-0.4.2-pp38-pypy38_pp73-win_amd64.whl (12.5 kB view details)

Uploaded PyPy Windows x86-64

numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (10.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl (9.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (8.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy_rms-0.4.2-cp312-cp312-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_x86_64.whl (18.0 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_aarch64.whl (18.3 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy_rms-0.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-cp312-cp312-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy_rms-0.4.2-cp312-cp312-macosx_10_9_x86_64.whl (10.0 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy_rms-0.4.2-cp311-cp311-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_aarch64.whl (18.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy_rms-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-cp311-cp311-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy_rms-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl (10.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy_rms-0.4.2-cp310-cp310-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_aarch64.whl (18.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy_rms-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-cp310-cp310-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy_rms-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl (10.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy_rms-0.4.2-cp39-cp39-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_aarch64.whl (18.1 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

numpy_rms-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (17.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-cp39-cp39-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy_rms-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl (10.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy_rms-0.4.2-cp38-cp38-win_amd64.whl (13.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_x86_64.whl (17.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_aarch64.whl (18.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

numpy_rms-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (18.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy_rms-0.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64 manylinux: glibc 2.5+ x86-64

numpy_rms-0.4.2-cp38-cp38-macosx_11_0_arm64.whl (10.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy_rms-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl (10.0 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file numpy_rms-0.4.2.tar.gz.

File metadata

  • Download URL: numpy_rms-0.4.2.tar.gz
  • Upload date:
  • Size: 9.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for numpy_rms-0.4.2.tar.gz
Algorithm Hash digest
SHA256 cd1e82fb85afe24e963ec0f3465b90308b870b2395ec5144983d9b6c3979bff7
MD5 43bf8dea633001718cd7aa9121f2d02a
BLAKE2b-256 b1d86fc4d9409ecc9ff84fb3c6ad43c48f11331f8f6f51accc412287a0b349fd

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7bc7fe2df93cdf5d9b4478110320d14dadd8587c5846fcab006f370c37c3bcae
MD5 6def76d35a062f64ea365bea91267303
BLAKE2b-256 d3257a082b6d677e2267ffd14bde5e1e90b76fa77660c98d271581501b52012b

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0e6fbb544f5d75552b35549047b339adc3d34e0da49deb8ba5201b732c8ee032
MD5 0e22ebb613ade71c128c183ce0b77825
BLAKE2b-256 f1da7b48e3779593e213a58c98c63f97c14a66e1f6d8bccc296c541021691c95

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1c81c5f194f4e879e70b6dce8e4ac8afb654fffc89c1a1e26695cc6bf643725c
MD5 db2903ee13b31f05449cae6b5fb47a34
BLAKE2b-256 f452012d76bf2e1da4b84da14ccf168ca748b133ddad709e5d8031f2c3cc4165

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1e9ed9d77fe5e5e253e3eef0d3c8e7ee0ca47ddb7a178a2e12f863979747be2
MD5 b4a9856558e0584250ceaad6b2bdc960
BLAKE2b-256 365450039c6de41efd9b06fed689fe1fc8761e49d47417d1340b6e02c5c3ed8e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 405e9591aeec05fe5ba5c1011e2d21b6b2aefc3043917f9ad57bc0b0a799f3a9
MD5 214a121f98013d54c3eaa8096c57db57
BLAKE2b-256 cc1af09e64b26cb683b55341dd75631aed5d704febb578d6c19b5bf72c32704e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 c3e77e1a9fe2ff13318679e73ed3cfdc2e857308bb6eb2e2facde099556b9ee1
MD5 f7e710cc5ebb9144cd99e38004387a98
BLAKE2b-256 0add7514dce91f9ef95da4ec917f63c679b32cc665a0cf9760fcbba183716336

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe67f568583708418ee54f27fb10029ccfad71048f6d6bd5a3f78c35330d0db2
MD5 ffb9afea210cddf8ccd8110b87282c87
BLAKE2b-256 22a947c7c858864edf5a60ff228ca439fc693081954d129888d252dfd88ec6c3

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 913d6336759d1255b275b04724aba20a6352ff971863d1e3dfce41681e7046ad
MD5 b2a7ce91297c74b95e7941a62100506b
BLAKE2b-256 5d2c0056ca1f441a7a93defa059b8e3ba81470c807f460292cb8d13f21323755

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bc1996b8c04a000c7678775d28ff2bf9a064eef8deadd47d63d4a322592bb873
MD5 39514347589c1a0bd7eb0f848af286f3
BLAKE2b-256 ff642e283b59dc8435cf22ce24e40c054485d4f0056523059089bf4baa283fff

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ada1351d0a4475338ea77463e85a8af129fa1096020ac2a7bfc3bc6c95b1196d
MD5 7d4b3e1b7a0f9e49a656db2bc447b515
BLAKE2b-256 2d195a2842ffde725a4e0b5a2d2cd3ca9cc559c18d11c347d51664fd74ce236e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ff66710c0214cf943aaa8303565cb05356364703495c4ba809c6744b07df29ce
MD5 8e56fc6a40230b06c1f433e581ff2025
BLAKE2b-256 ad7d266500ba47294274d300a848304b585a176dd5317700a92cd8ad5b0f01af

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f9cabb0bff8046b6343c0d10b94759b00a0fd64dc13f2b238798287a352ff170
MD5 11c750030f7d666ecf3e9b0e4cdb9cc9
BLAKE2b-256 26daee976d3101e7fdfa74344413ad8c20a360b747422836916605feaf139894

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c9a5163ac0effda16fda77aff04eeab65ebeaef4afc2e3fe08cd19cfef84ced7
MD5 c38f22a0ade586459a7fe87e832bea9d
BLAKE2b-256 fdf925f74b5a8d89c0addb1a031bdb4e39758839c24aec6904fe5d8233692726

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 885fde34172eb15fdc1aa804629b8cdeeb01e21fcd5b1c2a6d8a6516fc07f8dd
MD5 cd7bd98083f2d740d267cadc0dc32d50
BLAKE2b-256 1e464e9dc2432427f7d18a57773709e5d26ad5e1c115b1c47eb4dfd65216aa9e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4a20f59a278eef196267858411fbd283e98373d2c6f989b02bcc33d785ac675
MD5 affb37fec8c6972afd1bad960657b061
BLAKE2b-256 cf6d740aae547cd6bb85250f47ddda636d3878cfe12f3a0558b13b9fb827c31d

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e4d2636920e2bd1a221da7385d5da8000b9fd7393a1de091fbe3586ad31e7853
MD5 a9e86e0abdbf12d42033b076f002bf44
BLAKE2b-256 14ffacb1bc07ddbeb36f56f275601dcf2f60ce587666784c8b4894044505fc7c

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2dcaf1f257cea1b3fb28d58ad351de2184a5f23ff41234f262a237a000b8ce55
MD5 c93f9e4828f4107bef969c1bb924b33c
BLAKE2b-256 78b045d404281c521ad5689d966d95c5f6515250a1e9f9b171463026cf8dd404

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2a22ec807e44a32cfea592a5e10bfa212b2d6d668e257c3880daa0c9fd066f7f
MD5 cc9e0be487cb5e4a79b9e0f30a5bbefd
BLAKE2b-256 90aa870a760b24a9a8810f31c34ff2871b5c24aaa6e856347a56dbf6bf7e4da5

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 15fd446e5b10447d6e97628f0c17cde7a3e7cd5f3b4f246072fb5f4cfd28642c
MD5 3063f68ebb2f5c67026d1f1e39ae0977
BLAKE2b-256 f76eb6494863fae6e835a087a16bf345a809fe629307b5c61d51a90088c42ac1

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 a2976156bb4356284e9367ff4f48ac25a0c512e5e481b359ce1f6dde6019c178
MD5 73de1506cc3d5d0a9411d7fed4427e90
BLAKE2b-256 449ff63baf559ba374d253c637dad8c6a78a6f2caf7e58c71643f5914af5f407

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1be36a85afe2d8201f8d032a8f825c9c54d9f96fd1f2dd85c34252dee5319533
MD5 18e5012555f28446655e3ffb4c7535e8
BLAKE2b-256 ebb00696f6cb492f41f95d2dad68a1e7ad969e05d0d966284550c8a4343de4f3

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a67ddc18c2a23972da7b6de38cfcea30b54f3b9cefd2dba00f7a198509b3c909
MD5 ec6ca716c724a1b3dbb203d91a630159
BLAKE2b-256 47ef8b59c0385040876cb3a94b727ef882dd496e3a9a379b826d73ab2befaec2

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 136f233cacc9c3b7534a0877ad0c54174fee59c7ee6b59ebcd64bf814abbcc25
MD5 2d7f12bb304d4e99a326218eef11b4bd
BLAKE2b-256 d8a46a56464a789a645e7144ce1871b32b82a57834893d19f8095730659cb4d5

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cdd435a00597c849e213c615fb67f2be4bb85c1283ad37ad6bf7ca00bb44fd1f
MD5 71f62ab09ccfea0020947be2e0a9d2e4
BLAKE2b-256 7bb5c44137d6b2a4455805fba078f33cc62cb03bc259c3af8ae5b1d137b9314e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2e4d813f896f603737fa7aaab39a7a47c15c1848819dbe515fe4864bb78041d6
MD5 eb43f4d6dd07022a623ad6f1e953515b
BLAKE2b-256 c504921b4ca08616b6baf64d90a8085de1800d614dd34f5f3e83965aa1aab4b6

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 67d3c682574991f727b5f0838530c290224a825aab17df85a2cb50de2aea5270
MD5 a2778d5018fee4b28cf534fae79990af
BLAKE2b-256 debf95a8c9e20dd3411084b2308fc164fa4931c4e1998b35d73d700325e835c3

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5a794f37c006e3a48e5d0702d379154618a9ff8a3f0a6cab92ac8453e4e0553a
MD5 5aada85bd15ec00ba5c188ee769a448a
BLAKE2b-256 86282b73f77e44ee594719a9fa58159d00944e3d04449bfd9ef0fc0856074b56

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1733bac17dc77e3d3a535e4be9175d6360c50325196a851049a97e23c982f09e
MD5 909edcb3986d3c07148fd9a617fe3977
BLAKE2b-256 54b9b783528addaf882f82c8924617e99a121d309f26a46b6b098743bbb5078c

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f9221e98c503a291a65ee4afff119c2e96432ac373b250d17c001c230cf9a86
MD5 d1fbf369f15588a22379dbdaa60b2376
BLAKE2b-256 20a421aec9c5bdc3ff6ad52159ebfb163bc858e820740970223da5837e89a7fb

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6b836d6c7a5bc11e6373abfc74f4d77ad1f1b4260c136e5c067357fe50a373d2
MD5 621e46de6cf48f7b0f846d36d92950c6
BLAKE2b-256 b38d9561f7bb96aba3877a56453e3dfcdd024eb894835a7b2c1bc288142c68d7

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0f872b70578b8db26255d2334391bb60ff30139a8013392531da17713e9962cf
MD5 85e2e745ca1e66de1cafd2782d3d9205
BLAKE2b-256 8ff6a3af8c08f672de135f7e53fd0fd99947df919f3735398fda3d79e1fe6692

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6308b0f00025ebeea63c1876a0815e026afb09eb47a8f109cbd2fc71c8abb501
MD5 34827ec991e8a683dc89552dd34dda22
BLAKE2b-256 d846b2ea5a3d2da2ec6fb8e12061197edc2ae8ab99bb81ffc70d62ef2b2f57c0

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a0f97949cf9198fcbe849c0cf90a8ebaf5192916b84a39b90ec26564d889bab5
MD5 b2a258095d8584070a92bd7426732f24
BLAKE2b-256 49d42fda5e7ded2b202e9dfbdd9df5bd31f148c7dcb42904f0572a518ba3f1c4

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 18000baa61aec01f9930a993cc8893c6dca0b0dcfd198e6bb180a898a0ac7264
MD5 16dde0193f72b60174ed8355f352b960
BLAKE2b-256 d92c6da6d7d183a15e3b9661e26efb0790e51cdd531d2de621f5e5c23c7fb5ae

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bee29a0f5fff0d5b5a94d001a64163a4114dd4181721b53f46592aa19726422
MD5 ba8d97a25a65cee4764066a65388b8f7
BLAKE2b-256 9bb7c1784377f28501bf03018d3bc85697f66b557f1af10e250573bd1782cf95

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 db118e117ff51c3467aba7f4d12c87f129f65b5d2216f9640621838711fe72dd
MD5 641d6bcda6aa48c9b394d14c37405282
BLAKE2b-256 1a400ebb3da4d7d6be2ce03f909bc2fc48ce23f66e6d6e3c8c968ad304481060

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b609c9f6211a2667f336eaca717371f305cd142505bc737bef66f3314f923c50
MD5 525b4079f7e30c2d0b8eb4e284c22bcf
BLAKE2b-256 6b8b63f157bccd003f6bf0f17089c1413888d3872f76eab45ad5a17444f4fc37

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 660a8c46fd226140ac447ccb480c66b8b8ad207326a03db77063cfa645976b40
MD5 c3783605ff1b77e8865478b9144a271f
BLAKE2b-256 c1ca2f9fad3ae75f528dcdaf702240985bf577b92ecc8c265a8923778bcfdc7b

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy_rms-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.19

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 53ac4b32a819c06ab005213b358f74866dec40da30404be00250a661ed242657
MD5 eb7433ff63bcd83e9949d9618db3d1e2
BLAKE2b-256 144f22170154b9a33c87feecb20c7ad96319dc8ec5726b196be59004490bf717

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d01e1021e79affc2cf0fb1439247250728c40e354bc0b68357841f6a5fa9a84c
MD5 537e54d1a7595a391b5d9e061696e6a9
BLAKE2b-256 b25dd45b17afa861055d98fd2cdee4fbccbbc3c63a27d72c5a66c878e0536a51

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 952ae4c9895745457f0611742caaba318066498e365a2f52d415928c664b72ab
MD5 528dec3ca2ed42a119aa1c319da1afe9
BLAKE2b-256 0ad26798ba06198711f9e65f6f33436c3240318c08602d9d40b732638bf5e2a2

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 90dbd92c987fdd28536ef26128cd075d774a04fa5cfdf68f415bf0cacb6c0fd4
MD5 d13d654254add5b6e2177417def092e0
BLAKE2b-256 0862573b5c0d22b7213048b5ac2f1f352e4c4c3b87966e13aa0ba196405042ee

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 793744df9d60daa7d58b3c7b62136bef127b49a8da5f71429ab65164082e2682
MD5 632d87443c2c048817c15a1b7090cbb0
BLAKE2b-256 7db69879beea535ce542ea9a0e153bb661fa27d5ff2b25e183d1c92ca7163340

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 10021133c6ef2bdd07f1978c263ee186f5e9d970bded77fe7d93c8b13322dd34
MD5 601147dd8d4f01266cf04979f1e1e947
BLAKE2b-256 f27f4a2ba41e3e5c17c9bfc297d2550fd0e8fdf192deef63a9409ce73b12709e

See more details on using hashes here.

File details

Details for the file numpy_rms-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy_rms-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5eb62c650861343641362b192df384716c8bac0c0ab63e9626a38e7e4e8f90e4
MD5 6f2147937eb8edaac507e2f9761b0919
BLAKE2b-256 d92ecc7e244a9e2e9b9f1ce66a9c2282f771fdc18ff64d48e10942159084ec89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page