A fast python library for calculating the RMS of a NumPy array
Project description
numpy-rms: a fast function for calculating a series of Root Mean Square (RMS) values
- Written in C and takes advantage of AVX2 for speed
- The fast implementation is tailored for contiguous 1-dimensional float32 arrays
Installation
$ pip install numpy-rms
Usage
import numpy_rms
import numpy as np
arr = np.arange(40, dtype=np.float32)
rms_series = numpy_rms.rms(arr, window_size=10)
print(rms_series.shape) # (4,)
Changelog
See CHANGELOG.md
Development
- Install dev/build/test dependencies as denoted in pyproject.toml
CC=clang pip install -e .
pytest
Acknowledgements
This library is maintained/backed by Nomono, a Norwegian audio AI startup.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for numpy_rms-0.2.0-pp39-pypy39_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 443b5eb72f5e0bc9797c924331c1bfd37a1c7d45a93d1855a4d67fa6d9ead35d |
|
MD5 | 8f799bb25021f63641fa5e8cc8756ace |
|
BLAKE2b-256 | cf8e0fec669a65b6bebcd39137cb05ecebb96eb8c6b1e244efc2ffbc42290445 |
Close
Hashes for numpy_rms-0.2.0-pp39-pypy39_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c2dfcac6b56a38ac5d30328706dd01a4428b0ee0830912a4fa327baf4f935db5 |
|
MD5 | 0794f4d066026d125f617e471ed165b1 |
|
BLAKE2b-256 | bf6e789503c82064d795bed9c436edecce055a415ddbf5946be2e07993865052 |
Close
Hashes for numpy_rms-0.2.0-pp38-pypy38_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac1a8c165537cfb803ede5c7e03dd11bbe144e1a401af08035396c04282c8d19 |
|
MD5 | 065751771a38481b506b9ca398f97671 |
|
BLAKE2b-256 | cd7bce6b206e6d912e79a83801ad847af3615e1cca263a220ba95fe9d9823878 |
Close
Hashes for numpy_rms-0.2.0-pp38-pypy38_pp73-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 56a41b5cef76e7089aea6e07f87057f408c4706b46d1cae3dcc65c82d5276426 |
|
MD5 | 2e49943ae947db2b3133bb40dd610038 |
|
BLAKE2b-256 | bc48d6b660f2888eb02f47463948f4fa3004e53f7199e9118cfc19a138c424a9 |
Close
Hashes for numpy_rms-0.2.0-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e10406b6d404e764ef97ba22ea38d11012c9074a39e09a7f52930d0ee99c2d87 |
|
MD5 | 71a82c2ff65ace7ad6d9cc14bb1f947e |
|
BLAKE2b-256 | 80f2f06956906dc1cefb6d871bd735933ae629da5973ab91f46cceb7a8a8aa24 |
Close
Hashes for numpy_rms-0.2.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c0bb1ff0fcf4e142857929deee295231bd394f49a9450014799277758a761a50 |
|
MD5 | 95860de71bb57a0eaca8b201992dc430 |
|
BLAKE2b-256 | b8f0ed49e262154a7707d362ec0852778a0e1c96c9807278e7f19eb8e691b55a |
Close
Hashes for numpy_rms-0.2.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0c77c8bc3531321dc532959ef625b0e403f622a262624f03238a7440467ba0a9 |
|
MD5 | 738b74c222994f2d7d0887b4f07b8a62 |
|
BLAKE2b-256 | f80721c4fd5213a2a51ff615804d768b0153377a23313b146bed953b236614cb |
Close
Hashes for numpy_rms-0.2.0-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3019f1d7fb81b02990589f51f7fae7057ac0f3af292c359fcdcc13730f734146 |
|
MD5 | f7ca6312d2f4c7d4493a098ea04bd9ff |
|
BLAKE2b-256 | 8104c6fc77fd21b1df4bd092cedc3eba3a494ae0075b298097d82aa93c2ee4f9 |
Close
Hashes for numpy_rms-0.2.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 91809850e3ce61b26f8ec6579246fc938b72fdfdbbb43632039a447e93ba468a |
|
MD5 | 9f4ae3f9822a38b804322094452b8c9d |
|
BLAKE2b-256 | 4b36a2033316e129ece602e1d11edc2fcbb99ace155b8f16495d98694ddd4f94 |
Close
Hashes for numpy_rms-0.2.0-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 70d2e4bef15fd83d74150d7c342acc5d7068ce9089b94bc9390cd4e20d2ae98a |
|
MD5 | dc581f69a77e1f1ece71afd9a1f20178 |
|
BLAKE2b-256 | 17410ce0c2d24d18c76dbb2469a108e670e3f288980d93de429c2efd76a58982 |
Close
Hashes for numpy_rms-0.2.0-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3bc2a6bb49f438e0f0af4e9ba27b0024ae37aa160d273cfb3a9800624f1f912c |
|
MD5 | 795679edf7289e61b263f54754713359 |
|
BLAKE2b-256 | fac65b1e8346a79dd4a434233e204bf25cad9b03d5944d0c2017ae8291739027 |
Close
Hashes for numpy_rms-0.2.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a6cc79a775e9eda0e4804e8a450a47fea739747aca81316d4d4959ee51177570 |
|
MD5 | 688c3a035a75c28da40bc7cf45d2a182 |
|
BLAKE2b-256 | 6154bb4eb8cd77b1e15a116876ba843112e2e8e8e3beb1b71d8e29077af3cd77 |
Close
Hashes for numpy_rms-0.2.0-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28441b936bbe793ec7623c2c6f99971e1a38a5ee7829641b9735077df8e6c940 |
|
MD5 | 9041ae651e1cf29ea2644cf2a838eaa1 |
|
BLAKE2b-256 | 112aebfc528765db5bd9f1831bb3493e17bd81453585a9da25fa61989dd38af7 |
Close
Hashes for numpy_rms-0.2.0-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6535a9379b95de4832ec2ac214fb55150c3900c0f107886f3c577b950ea4a0f |
|
MD5 | d286d3ee2c15fa4d7fea8e64e18f6556 |
|
BLAKE2b-256 | 21d865f8d0e0519c9ae13335e1f6bbe84deb3586ad1318dfd32359429e1f11c8 |
Close
Hashes for numpy_rms-0.2.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eed0fefd6e228553432b3e1527e1c64f21e068a0769358f3d793b6a28104a122 |
|
MD5 | 79687a81a188630d95c42fe3fe3a0452 |
|
BLAKE2b-256 | 6a41bf2bf4ef750bb4cb41a6212514c4fdc2d434b860e84ec096cf888921d5da |
Close
Hashes for numpy_rms-0.2.0-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 361a553bec1d081d3bdd9a10f97d574e2c56111e1f2262ab6ab9cb3826a49e6d |
|
MD5 | 314f5a8b86661b5a52541def57a10cae |
|
BLAKE2b-256 | 60ee30f01a4fdd993039e637483ec1d5f0436790d29b3c6297e497ca8372a835 |
Close
Hashes for numpy_rms-0.2.0-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb7e2e1bbd5b69f49391e45bb8b0773dc59464381005555f85c1d2545947ed5a |
|
MD5 | 56bfb7591d1d11541cd119c156cf5dcf |
|
BLAKE2b-256 | c24ad536b137aa8849f804f3611e1362bdecfe5c681abf9faef73b3142cc8639 |
Close
Hashes for numpy_rms-0.2.0-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0883505f34bfd595deca25dd9fdad9b5482ac6219fad7309fd5f24ca2bce11e4 |
|
MD5 | 7329ad62679e2229b63a95307209d28f |
|
BLAKE2b-256 | a93bb2dc0caef2e08732c34c13d06e70315016311f88724c94fc226e26ddd3ab |
Close
Hashes for numpy_rms-0.2.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6d805fce19b75dd0b4bcdda28188a6770774c730f01a69cc8faa2456a0dec52e |
|
MD5 | 05bfacf0d24e0246605bf0af742a8016 |
|
BLAKE2b-256 | ae2a755b4288f65d65fd7873dcf955b167f99c85ea17c2072902550e89b0dea8 |