Skip to main content

Library to make reading, writing and modifying both binary and ascii STL files easy.

Project description

Simple library to make working with STL files (and 3D objects in general) fast and easy.

Due to all operations heavily relying on numpy this is one of the fastest STL editing libraries for Python available.

Requirements for installing:

Installation:

pip install numpy-stl

Initial usage:

  • stl2bin your_ascii_stl_file.stl new_binary_stl_file.stl

  • stl2ascii your_binary_stl_file.stl new_ascii_stl_file.stl

  • stl your_ascii_stl_file.stl new_binary_stl_file.stl

Quickstart

import numpy
from stl import mesh

# Using an existing stl file:
your_mesh = mesh.Mesh.from_file('some_file.stl')

# Or creating a new mesh (make sure not to overwrite the `mesh` import by
# naming it `mesh`):
VERTICE_COUNT = 100
data = numpy.zeros(VERTICE_COUNT, dtype=mesh.Mesh.dtype)
your_mesh = mesh.Mesh(data, remove_empty_areas=False)

# The mesh normals (calculated automatically)
your_mesh.normals
# The mesh vectors
your_mesh.v0, your_mesh.v1, your_mesh.v2
# Accessing individual points (concatenation of v0, v1 and v2 in triplets)
assert (your_mesh.points[0][0:3] == your_mesh.v0[0]).all()
assert (your_mesh.points[0][3:6] == your_mesh.v1[0]).all()
assert (your_mesh.points[0][6:9] == your_mesh.v2[0]).all()
assert (your_mesh.points[1][0:3] == your_mesh.v0[1]).all()

your_mesh.save('new_stl_file.stl')

Plotting using matplotlib is equally easy:

from stl import mesh
from mpl_toolkits import mplot3d
from matplotlib import pyplot

# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# Load the STL files and add the vectors to the plot
your_mesh = mesh.Mesh.from_file('tests/stl_binary/HalfDonut.stl')
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(your_mesh.vectors))

# Auto scale to the mesh size
scale = your_mesh.points.flatten(-1)
axes.auto_scale_xyz(scale, scale, scale)

# Show the plot to the screen
pyplot.show()

Modifying Mesh objects

from stl import mesh
import math
import numpy

# Create 3 faces of a cube
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)

# Top of the cube
data['vectors'][0] = numpy.array([[0, 1, 1],
                                  [1, 0, 1],
                                  [0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
                                  [0, 1, 1],
                                  [1, 1, 1]])
# Right face
data['vectors'][2] = numpy.array([[1, 0, 0],
                                  [1, 0, 1],
                                  [1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
                                  [1, 0, 1],
                                  [1, 1, 0]])
# Left face
data['vectors'][4] = numpy.array([[0, 0, 0],
                                  [1, 0, 0],
                                  [1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
                                  [0, 0, 1],
                                  [1, 0, 1]])

# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5

# Generate 4 different meshes so we can rotate them later
meshes = []
for _ in range(4):
    meshes.append(mesh.Mesh(data.copy()))

# Rotate 90 degrees over the Y axis
meshes[0].rotate([0.0, 0.5, 0.0], math.radians(90))

# Translate 2 points over the X axis
meshes[1].x += 2

# Rotate 90 degrees over the X axis
meshes[2].rotate([0.5, 0.0, 0.0], math.radians(90))
# Translate 2 points over the X and Y points
meshes[2].x += 2
meshes[2].y += 2

# Rotate 90 degrees over the X and Y axis
meshes[3].rotate([0.5, 0.0, 0.0], math.radians(90))
meshes[3].rotate([0.0, 0.5, 0.0], math.radians(90))
# Translate 2 points over the Y axis
meshes[3].y += 2


# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d

# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# Render the cube faces
for m in meshes:
    axes.add_collection3d(mplot3d.art3d.Poly3DCollection(m.vectors))

# Auto scale to the mesh size
scale = numpy.concatenate([m.points for m in meshes]).flatten(-1)
axes.auto_scale_xyz(scale, scale, scale)

# Show the plot to the screen
pyplot.show()

Extending Mesh objects

from stl import mesh
import math
import numpy

# Create 3 faces of a cube
data = numpy.zeros(6, dtype=mesh.Mesh.dtype)

# Top of the cube
data['vectors'][0] = numpy.array([[0, 1, 1],
                                  [1, 0, 1],
                                  [0, 0, 1]])
data['vectors'][1] = numpy.array([[1, 0, 1],
                                  [0, 1, 1],
                                  [1, 1, 1]])
# Right face
data['vectors'][2] = numpy.array([[1, 0, 0],
                                  [1, 0, 1],
                                  [1, 1, 0]])
data['vectors'][3] = numpy.array([[1, 1, 1],
                                  [1, 0, 1],
                                  [1, 1, 0]])
# Left face
data['vectors'][4] = numpy.array([[0, 0, 0],
                                  [1, 0, 0],
                                  [1, 0, 1]])
data['vectors'][5] = numpy.array([[0, 0, 0],
                                  [0, 0, 1],
                                  [1, 0, 1]])

# Since the cube faces are from 0 to 1 we can move it to the middle by
# substracting .5
data['vectors'] -= .5

cube_back = mesh.Mesh(data.copy())
cube_front = mesh.Mesh(data.copy())

# Rotate 90 degrees over the X axis followed by the Y axis followed by the
# X axis
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))
cube_back.rotate([0.0, 0.5, 0.0], math.radians(90))
cube_back.rotate([0.5, 0.0, 0.0], math.radians(90))

cube = mesh.Mesh(numpy.concatenate([
    cube_back.data.copy(),
    cube_front.data.copy(),
]))

# Optionally render the rotated cube faces
from matplotlib import pyplot
from mpl_toolkits import mplot3d

# Create a new plot
figure = pyplot.figure()
axes = mplot3d.Axes3D(figure)

# Render the cube
axes.add_collection3d(mplot3d.art3d.Poly3DCollection(cube.vectors))

# Auto scale to the mesh size
scale = cube_back.points.flatten(-1)
axes.auto_scale_xyz(scale, scale, scale)

# Show the plot to the screen
pyplot.show()

Creating Mesh objects from a list of vertices and faces

import numpy as np
from stl import mesh

# Define the 8 vertices of the cube
vertices = np.array([\
    [-1, -1, -1],
    [+1, -1, -1],
    [+1, +1, -1],
    [-1, +1, -1],
    [-1, -1, +1],
    [+1, -1, +1],
    [+1, +1, +1],
    [-1, +1, +1]])
# Define the 12 triangles composing the cube
faces = np.array([\
    [0,3,1],
    [1,3,2],
    [0,4,7],
    [0,7,3],
    [4,5,6],
    [4,6,7],
    [5,1,2],
    [5,2,6],
    [2,3,6],
    [3,7,6],
    [0,1,5],
    [0,5,4]])

# Create the mesh
cube = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype))
for i, f in enumerate(faces):
    for j in range(3):
        cube.vectors[i][j] = vertices[f[j],:]

# Write the mesh to file "cube.stl"
cube.save('cube.stl')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-stl-1.8.0.tar.gz (41.5 kB view hashes)

Uploaded Source

Built Distribution

numpy_stl-1.8.0-py2.py3-none-any.whl (19.7 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page