Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.11.1.zip (4.7 MB view details)

Uploaded Source

numpy-1.11.1.tar.gz (4.2 MB view details)

Uploaded Source

Built Distributions

numpy-1.11.1-cp35-none-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.11.1-cp35-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.11.1-cp35-cp35m-manylinux1_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.5m

numpy-1.11.1-cp35-cp35m-manylinux1_i686.whl (11.7 MB view details)

Uploaded CPython 3.5m

numpy-1.11.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.11.1-cp34-none-win_amd64.whl (7.4 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.11.1-cp34-none-win32.whl (6.5 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.11.1-cp34-cp34m-manylinux1_x86_64.whl (15.6 MB view details)

Uploaded CPython 3.4m

numpy-1.11.1-cp34-cp34m-manylinux1_i686.whl (11.7 MB view details)

Uploaded CPython 3.4m

numpy-1.11.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.11.1-cp27-none-win_amd64.whl (7.4 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.11.1-cp27-none-win32.whl (6.5 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.11.1-cp27-cp27mu-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 2.7mu

numpy-1.11.1-cp27-cp27mu-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.11.1-cp27-cp27m-manylinux1_x86_64.whl (15.3 MB view details)

Uploaded CPython 2.7m

numpy-1.11.1-cp27-cp27m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 2.7m

numpy-1.11.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (3.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.11.1.zip.

File metadata

  • Download URL: numpy-1.11.1.zip
  • Upload date:
  • Size: 4.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.11.1.zip
Algorithm Hash digest
SHA256 4e9c289b9d764d10353a224a5286dda3e0425b13b112719bdc3e9864ae648d79
MD5 5caa3428b24aaa07e72c79d115140e46
BLAKE2b-256 dd9fcd0ec9c50e4ed8650901ad4afde164e5252b6182a9e0c7bff5f8b4441960

See more details on using hashes here.

File details

Details for the file numpy-1.11.1.tar.gz.

File metadata

  • Download URL: numpy-1.11.1.tar.gz
  • Upload date:
  • Size: 4.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.11.1.tar.gz
Algorithm Hash digest
SHA256 dc4082c43979cc856a2bf352a8297ea109ccb3244d783ae067eb2ee5b0d577cd
MD5 2f44a895a8104ffac140c3a70edbd450
BLAKE2b-256 e04c515d7c4ac424ff38cc919f7099bf293dd064ba9a600e1e3835b3edefdb18

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 f98527e21787bf28b133960092c729ce00230d32a65dce9843a6df3100704740
MD5 6cc4e7aca4bbcd7deee0bf84fa8c5f1d
BLAKE2b-256 5101c26bb6934649bc9bee68d50dd4a1b1f33818a594a48768953affdc84418e

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 2b74b2b26fd13e108d3cf8608ea9eaaab510c10f684ce2ea2dc0daa70ced245c
MD5 2622f1dd3409044111a6066c38256fa5
BLAKE2b-256 16d6166f1d36088503aff460d6f73f8ab3b95f86c24819e9998f848fea8775eb

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1a3190e190bd372847e10161bfa15265cfa769e1ca9bacb5011e39aa00255b8d
MD5 a27885003f73e66c760706c6d3a4eadf
BLAKE2b-256 24e9a8da8938a1cf56d58b2a848584dac0cbf54460bc46535844b9a196942abb

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f116e06a0cfe4da5e46ca98a1662e290d7a83fb7f629612504b070c1e4320e41
MD5 548be045238341da307a1a7a8c3eedd2
BLAKE2b-256 8190e10916e22f55140f7df4eb1177c7e028597540c5d6f9ffa1d24e8ae65582

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5bb19b36b271c77d5882bb3f6b6cbd3ddb5865874b9a0264a66f55fcbd6ba12b
MD5 130913f0da357e83bbdf1d920a1e123a
BLAKE2b-256 8147f2a7f9a90eaa831ac2d165b26b5979d9b02d2664ec92929b10faedf6469d

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 a7e15ecbd6f33566f16c81a810654c75516058df9d2a63ecbc6981290ae4c420
MD5 600a1acaefd8634cc00ebb92e03ba7c2
BLAKE2b-256 aa9e1ef49152094fafe769aed9308f2f1dc51c3f59ad4d1766492aafacec32bf

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 e4769d57fc04b0b28a01c0993559747a478464fb5302fe15aed9ca58f1aa98b5
MD5 c27c64a752a04aca939dc8de0d09b53f
BLAKE2b-256 20858697e4a4854723b58bbf5919b96a4506adf0b39069b667cf2a847536b88d

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0c4c790b665e8760b8340bf9041fb64d3dba4f835490bb4a6e5c34705ac51309
MD5 ac71fa002f3ec4901731ccc726641313
BLAKE2b-256 1dd045a22fbb4f473c3b3e4af762aab6ad54bf48f327896228e2222a3e19c443

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1e42da46b60b5911dcc5cdf863c1383216a539421c79bab976dc0c4601f9afcd
MD5 270564deeac2d788a74a60f9f70b0953
BLAKE2b-256 081032b9f82183d04c52f99debb3b671a1c97debcf6223d725068a34c3dd70ee

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f0a2834b78ccaa09cc3dd9d4595131d9756f08b6fcc362db8741ae44dc6734bd
MD5 672378d960f248d027a5cb49126d2f3f
BLAKE2b-256 447964746aee94dbb0621557d4595e0bc523d73cdfbeea14e962f611d30a3c17

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 47cb4b107b709adb968622f311abd72b6e4f2c6eb0f0b58a1af7f329d8c4e767
MD5 ac0654af07873d65010eff700a35c7c0
BLAKE2b-256 0954427f4a110ed753c65375f9dd90ff7d7dd8f5bb754c5d810120386c1bc456

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 96d6b2bcaf2b729f7102c58a3fb4f4817cf26633dcaf397c68c723b1275b8473
MD5 8d519465e0f7549e88b4b67af37f32d5
BLAKE2b-256 cd19d5b1a2b2daff3fb44d67e230f1790b45b46cb1b3b8e4dcc825ce9228a209

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8db5374435c071fa549fa1aa1abbb7b427be51ec79f27d913e2802813776893a
MD5 24b1beb105e06335a41aab63409249f6
BLAKE2b-256 18eb707897ab7c8ad15d0f3c53e971ed8dfb64897ece8d19c64c388f44895572

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ef9c10f3781f77d175ea324c60d7f5b683224936d7343131be7f32322570e72d
MD5 c5515617341bb2914f221048b51c3c62
BLAKE2b-256 24207f915ab73d60f7625ab23fc68864a4a5791b3e0c6332720c3c22ee785d71

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 52f8839ab0fe7fcebb19dd2cef1ecca7f11a2f8b2644b379865bb4e547faf5d8
MD5 44944748be64b99ae5d793d285247964
BLAKE2b-256 ae341b5838ae482992fcc4f2d00ced6bb1dde58f4abb352a4af65a9f13ce9dd7

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8dd165395f2c9b46c96c83aa4903487da738716f7bc5a8a0a48112b61ec4cc4e
MD5 16bc870cb0bc00edeb501e55767366c2
BLAKE2b-256 e9153abada82749ee864ba12f962c25b75903b2dafed56b9c5fa8150d3b42ad2

See more details on using hashes here.

File details

Details for the file numpy-1.11.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.11.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 2296c5ef86e97955905cb2a65e137bebea5b36925a2611697dc860c9aebff854
MD5 f1b4937c0bed72e5beb8e8710af0987d
BLAKE2b-256 635a8e10e3e34f36a542572a5b0f06e452871f2f03e60faabb781c55ea943396

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page