Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

All numpy wheels distributed from pypi are BSD licensed.

Windows wheels are linked against the ATLAS BLAS / LAPACK library, restricted to SSE2 instructions, so may not give optimal linear algebra performance for your machine. See http://docs.scipy.org/doc/numpy/user/install.html for alternatives.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.12.1.zip (4.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.12.1-cp36-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.6 Windows x86-64

numpy-1.12.1-cp36-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.6 Windows x86

numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.6m

numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl (12.7 MB view details)

Uploaded CPython 3.6m

numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.1-cp35-none-win_amd64.whl (7.7 MB view details)

Uploaded CPython 3.5 Windows x86-64

numpy-1.12.1-cp35-none-win32.whl (6.7 MB view details)

Uploaded CPython 3.5 Windows x86

numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.5m

numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl (12.6 MB view details)

Uploaded CPython 3.5m

numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.1-cp34-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 3.4 Windows x86-64

numpy-1.12.1-cp34-none-win32.whl (6.6 MB view details)

Uploaded CPython 3.4 Windows x86

numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.4m

numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl (12.7 MB view details)

Uploaded CPython 3.4m

numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.4m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.12.1-cp27-none-win_amd64.whl (7.5 MB view details)

Uploaded CPython 2.7 Windows x86-64

numpy-1.12.1-cp27-none-win32.whl (6.6 MB view details)

Uploaded CPython 2.7 Windows x86

numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl (16.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 2.7mu

numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl (16.5 MB view details)

Uploaded CPython 2.7m

numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl (12.4 MB view details)

Uploaded CPython 2.7m

numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (4.4 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.12.1.zip.

File metadata

  • Download URL: numpy-1.12.1.zip
  • Upload date:
  • Size: 4.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.12.1.zip
Algorithm Hash digest
SHA256 a65266a4ad6ec8936a1bc85ce51f8600634a31a258b722c9274a80ff189d9542
MD5 c75b072a984028ac746a6a332c209a91
BLAKE2b-256 a5168a678404411842fe02d780b5f0a676ff4d79cd58f0f22acddab1b392e230

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp36-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 47b4c4da2fe0618b65fd70987a414fdc24c09e1ffdff77f7147a3c6627b07596
MD5 0c753fec7a10e3778215eb9f7c6f43f4
BLAKE2b-256 581a473632103d3ef36f20cb578c33bda0fcd2dfd442845e3fedb94b59baf13f

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp36-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp36-none-win32.whl
Algorithm Hash digest
SHA256 727d6373355b00b96d9320254a676b878d6cd43ae409186bec27eec3e5e4e6e7
MD5 3e3110a79b3ce9feb8af31aaf3b47003
BLAKE2b-256 1f472b4201be09432abfb52a449f58005d2f014b9d51acceafe54c8192980ccb

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5dd60892710df0ef654bbf4d1e3cb53ac79845e55a96e4a26dd47218e06d819a
MD5 fbebdc68b7698e00c07bf4ddae0fb717
BLAKE2b-256 b1e2884cfbfd4f21b2313210d1d2ea72ecc381b98826d1b7e6606929ac6c0a08

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5cb6341fc885b101978328d3c8d51a069a97a00699a30891106ef7dda56a0d30
MD5 c1f1c64b9d421c8715e476ae8a9d274e
BLAKE2b-256 ed4159f8fb0197e66377db8407df3ca465011267e988b094c4df0879688efe92

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 43ccfed0092def52b924e004780517c762f8fce3ececbd3f8e2580ac0538bb5e
MD5 a1d17430e3688e962feac3ec0d2f12c2
BLAKE2b-256 e957a204d3eaefc5ba2bb3d93ac1b93d1ab755d3874ab3d9c33a897e9f79b035

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp35-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 818d5a1d5752d09929ce1ba1735366d5acc769a1839386dc91f3ac30cf9faf19
MD5 4b32dcd1c59804f53cb9473d99673ea5
BLAKE2b-256 92e27d9c6894511337b012735c0c149a7b4e49db0b934798b3ae05a3b46f31f0

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp35-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp35-none-win32.whl
Algorithm Hash digest
SHA256 e97cecd783e8e7e70d18a42f6df7f18be14cbcc82fb9b837b03d072d1401ae53
MD5 9d2d3a0d9af306c51255ced96244213f
BLAKE2b-256 6e06b83acf0caf285cc9fdcbb45202c1f0609fc06ad7555449a1c6e4d9572a0e

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 92dce120e385767cbe433719b5e3fdb1ac81907140d3984b3187208f79aff19f
MD5 c372561ab420e6e18eb8f2e7da24f1fd
BLAKE2b-256 715c945047c185332bbaf57c400dc4c9bffa13c97486df3cd99e25a641f1cbbb

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 130105bfc0b03245115da67b441c48597bf1ed7f5385f8388ce4f75cdf2f91d2
MD5 5bb0426593f74b922f1e549cde412f4b
BLAKE2b-256 a01cfc043d84afe1157c0ba52ed55d19fbfd51aaacabc81036c74155862aa8d6

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9ce673bb7b6240b94b60b52186f5c0825f4b31e8191c8bc7412a7d0348fca2cd
MD5 ebd51c3549ee44a57af0f35a9f5b2b02
BLAKE2b-256 7e7919053aebeb6e0ddf160ee1776a842d580e69757790ea1af8719d31595485

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 4c64d9c389827f310c7f4e7887b741c34c6b2c337ff63a12f66ef0197fdf5366
MD5 cac2b18bde8a76537762e8acfb25c89d
BLAKE2b-256 139dc08e7977921729d5655aebdd2e2170641e310e789aa6944fb43a406c0282

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp34-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp34-none-win32.whl
Algorithm Hash digest
SHA256 9cd16915a815c2f04633d14e7640083c1b72e82b325439c91370adfd376c9975
MD5 7e08d4f57dc51c7916042670753c0462
BLAKE2b-256 adb05fcd4319cb4f66db0ebd8facb030981e5a34172a27d35fdeafbf2cfafaaf

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4eac5f2f624c5e7eecbdb51395ff39a099c48cab607a158f16f288c6fe39a2b3
MD5 6288d4e9cfea859e03dc82879539d029
BLAKE2b-256 0264c6c1c24ff4dbcd789fcfdb782e343ac23c074f6b8b03e818ff60eb0f937f

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d8dbd7e35e4819e059a044c7545d5602937d6b666dbd9b6eb8ff40037ab0980c
MD5 e5e9c27564bd41d88df001c2cc0ace7b
BLAKE2b-256 889210cb30d909aa55003096ad23bab761bc305c05b7c20c406760c76e0c72e0

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bcbce5ef18dc826ef67756a0d3669baca815c8d44b26867c6865f714a23d9262
MD5 2d89d21806408befdc20b5c9e8bfd354
BLAKE2b-256 69e1c8b40d1c9e1130996881ad3d42ecec7b31e24307a48c3b23c69ab9a0cafb

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 95e52d1077abeead6d205c1fc644f075228813859bb625960c1ae1248c4189ba
MD5 7cd640cdcb6b80fa501d377bf883ec61
BLAKE2b-256 a06102bbd10971adb84ba13cf642b7b2702c9d0e20a4432f6cbf0866274bac98

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-none-win32.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-none-win32.whl
Algorithm Hash digest
SHA256 56e68de63ae738f40669b6a5f0601f9453940a0470a1e9bea16448e5b53f5f28
MD5 906d8d8e1cb6a5056e0405d5b54d6440
BLAKE2b-256 32155dac23340abe95eae4e819f1575fb9be6b87ea92bf31ca808b41119d0346

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cd7892f7d644d1b4ed2ead254d4851616c07ecf82618e3203e2a81747ffb6069
MD5 471f740f61f7fba1a1a1e526bf710c49
BLAKE2b-256 f9d5f24f86b51298f171826a398efdd64b5214b687a28a2f05ff736b1505b1b2

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7e9015bc5de54c8bd73ca750ccedfda25d34a25a767caf802740d35a692ec3ab
MD5 3ec80a7e027146d4fad10f85426af256
BLAKE2b-256 f5f983189c429515422673e226ea49805c7c7c5260f0dc5cd2e7baf70d892cc1

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ca917155b35b3bcc68ef1ad82570a29414f5088495ea8f68c65b071c50e64340
MD5 614755c8ee8408b83bd1ba837b6034b2
BLAKE2b-256 d8f997aa0903ae39ed4ab6df1c9c22902f3c71f4330a54cf5a81b2bea585544d

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 405ce136edb18c6f1f8c5acc75d7d8fbb875cc8b5015562251b93435099233d3
MD5 71c887adb4cf6a374ff4a83115c8860b
BLAKE2b-256 1eea6b12b5ae7f879fdda936f0a407ecb1b8f1b65f1b57c696f6a36632c55250

See more details on using hashes here.

File details

Details for the file numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.12.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3b21dc40fa1e2450dee8cf54991b0f95c415ac508d5db1227338efcf03c162cd
MD5 ca6c4a370f76bb461f7c3e254c45db02
BLAKE2b-256 0505c9d5ef7c85ce92a95eb449523c8b3baf8890bf04e1ebcb119980915c5488

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page