Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.16.1.zip (5.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.16.1-cp37-cp37m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.16.1-cp37-cp37m-win32.whl (10.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m

numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.7m

numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.1-cp36-cp36m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.16.1-cp36-cp36m-win32.whl (10.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.6m

numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.6m

numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.1-cp35-cp35m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.16.1-cp35-cp35m-win32.whl (10.0 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl (14.7 MB view details)

Uploaded CPython 3.5m

numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.1-cp27-cp27m-win_amd64.whl (11.8 MB view details)

Uploaded CPython 2.7m Windows x86-64

numpy-1.16.1-cp27-cp27m-win32.whl (10.0 MB view details)

Uploaded CPython 2.7m Windows x86

numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7m

numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7m

numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.16.1.zip.

File metadata

  • Download URL: numpy-1.16.1.zip
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1.zip
Algorithm Hash digest
SHA256 31d3fe5b673e99d33d70cfee2ea8fe8dccd60f265c3ed990873a88647e3dd288
MD5 dafda51934f645d888866f98424521ae
BLAKE2b-256 2b2607472b0de91851b6656cbc86e2f0d5d3a3128e7580f23295ef58b6862d6c

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f1a29267ac29fff0913de0f11f3a9edfcd3f39595f467026c29376fad243ebe3
MD5 18b7d994de469d38e26c75c27898fa4f
BLAKE2b-256 41b83a6b07352c2542ca1c89be7583e7ca07bf513895b6ac59ae008054f326b1

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.16.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 79463d918d1bf3aeb9186e3df17ddb0baca443f41371df422f99ee94f4f2bbfe
MD5 7443f622e549bf116ca561c1db6a4491
BLAKE2b-256 d9916829d324a2966b0f2b7da55b88d7492610e5c22c74a99f6da55df2f7b2d0

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0cdbbaa30ae69281b18dd995d3079c4e552ad6d5426977f66b9a2a95f11f552a
MD5 daaac731bf53b6f90bf381e30c0b0e35
BLAKE2b-256 615707c49e1a6d2706fb7336b3fb11dd285c1e96535c80833d7524f002f57086

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 485cb1eb4c9962f4cd042fed9424482ec1d83fee5dc2ef3f2552ac47852cb259
MD5 df387b8e8ee398f2a6a46b18981ce7e3
BLAKE2b-256 0fc4cb112a28c67bc523caaee3b2b56d045e4b74704075e097b3f50a611eecce

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b13faa258b20fa66d29011f99fdf498641ca74a0a6d9266bc27d83c70fea4a6a
MD5 8eca0834ffce217b61633a2ba16f9e98
BLAKE2b-256 46e44a0cc770e4bfb34b4e10843805fef67b9a94027e59162a586c776f35c5bb

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2b0cca1049bd39d1879fa4d598624cafe82d35529c72de1b3d528d68031cdd95
MD5 641af9183978922d4eb610c0df1abb4a
BLAKE2b-256 b51182916e23836a37c0d76babf74a7ca6f7b4fedd0814eaa166aacc2318b87c

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.16.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 384e2dfa03da7c8d54f8f934f61b6a5e4e1ebb56a65b287567629d6c14578003
MD5 3a422881207202055c7530d3c4a63cc0
BLAKE2b-256 8410f1f99ba67aff4c3fb033571e87876ed0403114b13bc70cc125372b0c1dcb

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7298fbd73c0b3eff1d53dc9b9bdb7add8797bb55eeee38c8ccd7906755ba28af
MD5 2d146e75063ce8aaa255ea06d6647fa2
BLAKE2b-256 f5bf4981bcbee43934f0adb8f764a1e70ab0ee5a448f6505bd04a87a2fda2a8b

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 392e2ea22b41a22c0289a88053204b616181288162ba78e6823e1760309d5277
MD5 a9561d8a38ee7d52126dfe779429036d
BLAKE2b-256 3e6364588bca37e18944a28718230d53ab6ff415fad15105acf73b89b75a60c5

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c2c39d69266621dd7464e2bb740d6eb5abc64ddc339cc97aa669f3bb4d75c103
MD5 269c80fde767b2b65abec775171aebed
BLAKE2b-256 88b8569d9c702685b595812fbfd9ee04f240653b7a15feec43cc98be3b34e5f5

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 34dd4922aab246c39bf5df03ca653d6265e65971deca6784c956bf356bca6197
MD5 42b9d99bf4b03e3e9ae7aee8cbdff97c
BLAKE2b-256 2d96dc231b4bcd8781c16102e3deb5c857a39115917fe5abb8b137a36e453637

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.16.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 45080f065dcaa573ebecbfe13cdd86e8c0a68c4e999aa06bd365374ea7137706
MD5 f2665475de0378467d88e6d80ac47f09
BLAKE2b-256 929c56778c5e07884dde41b9172d75f1a87d4e22a23e5abf9010e7313ed288a3

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 575cefd28d3e0da85b0864506ae26b06483ee4a906e308be5a7ad11083f9d757
MD5 486ce91fd66ec19044d8faa7d00e619b
BLAKE2b-256 ad15690c13ae714e156491392cdbdbf41b485d23c285aa698239a67f7cfc9e0a

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f69dde0c5a137d887676a8129373e44366055cf19d1b434e853310c7a1e68f93
MD5 86aacbea051b7542a8bd3486d2fa79cd
BLAKE2b-256 c9771ed2555fcefa55a606bc1c8111fe1355ba0edbf7d7eb577510994fffe50f

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8bbee788d82c0ac656536de70e817af09b7694f5326b0ef08e5c1014fcb96bb3
MD5 15bebbeddc5924243a010680e184b6e8
BLAKE2b-256 f4479cc508af5af902609f2139a296d1056213bd12a5677f1e2b90bd5f50191b

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6ccfdcefd287f252cf1ea7a3f1656070da330c4a5658e43ad223269165cdf977
MD5 55ccd6d343be1e16e70159714ac74848
BLAKE2b-256 e0b563b79fe426433fa1cd110eb04a94ec0c6967e56e5f57c98caf455a5fb6e2

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 62784b35df7de7ca4d0d81c5b6af5983f48c5cdef32fc3635b445674e56e3266
MD5 3bc676163ce4d526c8305bc889f0594d
BLAKE2b-256 7cff26f236a30b2d2b7236ee400398a0cd11dfb1d91a4d2e17cf30e0b313ecbc

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 a863957192855c4c57f60a75a1ac06ce5362ad18506d362dd807e194b4baf3ce
MD5 3a7eba56bcebc52b223d63ab4b9bf029
BLAKE2b-256 4e53f9321242bf0181a28e4fa5604b712b2e9495df1863e7a83eec3d0cc1ef99

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 4341a39fc085f31a583be505eabf00e17c619b469fef78dc7e8241385bfddaa4
MD5 b2193c7af769169229eef8d2371929c2
BLAKE2b-256 95d78e0eee8bd4c1433a373abfb453ff9fcd5e0676ea0d80d5a0c2167eabad76

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ae602ba425fb2b074e16d125cdce4f0194903da935b2e7fe284ebecca6d92e76
MD5 add6fcaf9b5007dca2fc966b918d585e
BLAKE2b-256 6c5009c906ae367e66f826fea41676c584672371eddff8b60644df506665d758

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 69c152f7c11bf3b4fc11bc4cc62eb0334371c0db6844ebace43b7c815b602805
MD5 8f39da654cd27a96877955a2fbf3883f
BLAKE2b-256 61df839828807cce8d513d5837c9104f5b406a6bcac37425f8c070cecae0fd6a

See more details on using hashes here.

File details

Details for the file numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.1-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 e9c88f173d31909d881a60f08a8494e63f1aff2a4052476b24d4f50e82c47e24
MD5 456aae0a43311da1570a53baef7f5620
BLAKE2b-256 3917f296f19b342975f6a6e653ef74a59fce9a8eeb2b052961f70c5f036fb8c1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page