Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.16.3.zip (5.1 MB view details)

Uploaded Source

Built Distributions

numpy-1.16.3-cp37-cp37m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.16.3-cp37-cp37m-win32.whl (10.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.7m

numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.7m

numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.3-cp36-cp36m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.16.3-cp36-cp36m-win32.whl (10.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl (17.3 MB view details)

Uploaded CPython 3.6m

numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl (14.8 MB view details)

Uploaded CPython 3.6m

numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.3-cp35-cp35m-win_amd64.whl (11.9 MB view details)

Uploaded CPython 3.5m Windows x86-64

numpy-1.16.3-cp35-cp35m-win32.whl (10.0 MB view details)

Uploaded CPython 3.5m Windows x86

numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.5m

numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl (14.7 MB view details)

Uploaded CPython 3.5m

numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7mu

numpy-1.16.3-cp27-cp27m-win_amd64.whl (11.8 MB view details)

Uploaded CPython 2.7m Windows x86-64

numpy-1.16.3-cp27-cp27m-win32.whl (10.0 MB view details)

Uploaded CPython 2.7m Windows x86

numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl (17.0 MB view details)

Uploaded CPython 2.7m

numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl (14.5 MB view details)

Uploaded CPython 2.7m

numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (13.9 MB view details)

Uploaded CPython 2.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file numpy-1.16.3.zip.

File metadata

  • Download URL: numpy-1.16.3.zip
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3.zip
Algorithm Hash digest
SHA256 78a6f89da87eeb48014ec652a65c4ffde370c036d780a995edaeb121d3625621
MD5 cab84884fba39fbd352550896bf22bfd
BLAKE2b-256 9348956b9dcdddfcedb1705839280e02cbfeb2861ed5d7f59241210530867d5b

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a4f4460877a16ac73302a9c077ca545498d9fe64e6a81398d8e1a67e4695e3df
MD5 370ec58a5fdfe9e7ffe90857577806c6
BLAKE2b-256 4e9dc129d78e6b942303b762ccfdf1f8339de80c5e6021b14ef0c99ec5bdc6aa

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.16.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 cfef82c43b8b29ca436560d51b2251d5117818a8d1fb74a8384a83c096745dad
MD5 c7e8e9f9ded13b1356e72cd8506df224
BLAKE2b-256 ab759ac63977cbca68e17406a53a8c573a925a16771800be47a73f18c838f3fb

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5a8f021c70e6206c317974c93eaaf9bc2b56295b6b1cacccf88846e44a1f33fc
MD5 4e907ac7d841018c0a9130ca45d099ee
BLAKE2b-256 bb7624e9f32c78e6f6fb26cf2596b428f393bf015b63459468119f282f70a7fd

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3d5fcea4f5ed40c3280791d54da3ad2ecf896f4c87c877b113576b8280c59441
MD5 fe3421cbae83004e7feca4d90043e9df
BLAKE2b-256 894dfe1c50ca7082cb2f170723ba25ed24eda3390729343f442a56007828f447

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1c666f04553ef70fda54adf097dbae7080645435fc273e2397f26bbf1d127bbb
MD5 00594b150e69d1776164ffa60d7fdc01
BLAKE2b-256 436e71a3af8680a159a141fab5b4d19988111a09c02ffbfdeb42175cca0fa341

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1f46532afa7b2903bfb1b79becca2954c0a04389d19e03dc73f06b039048ac40
MD5 9ba2467b05eb4471817509cabff1b9a6
BLAKE2b-256 2e11f006363050b24fb19a235e5efd219e7ac549398d531110d80b8f2ba3a909

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.16.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d160e57731fcdec2beda807ebcabf39823c47e9409485b5a3a1db3a8c6ce763e
MD5 773f9e76235ab5edd9ef1c083e62ea9f
BLAKE2b-256 8a6afe84d045cd21e4ee0624a2bddeddba47191c2680f4beb3581b6f79c04976

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4b4f2924b36d857cf302aec369caac61e43500c17eeef0d7baacad1084c0ee84
MD5 453f5996ac600c4085656e82005fb0e5
BLAKE2b-256 c1e24db8df8f6cddc98e7d7c537245ef2f4e41a1ed17bf0c3177ab3cc6beac7f

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7fde5c2a3a682a9e101e61d97696687ebdba47637611378b4127fe7e47fdf2bf
MD5 93a2a4b48f160ffd1bdd30023b842be2
BLAKE2b-256 eeefb442674cd2b54499be88eeacd031c81d94a1fc8e02e7ac28e80fe2a75f9d

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ab4896a8c910b9a04c0142871d8800c76c8a2e5ff44763513e1dd9d9631ce897
MD5 b23b0727562be62ffd943c7828822da9
BLAKE2b-256 ae764a4c012bca5688881c18f6e04694d221b88daa5d38526a4df87d75711199

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 11.9 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 b16d88da290334e33ea992c56492326ea3b06233a00a1855414360b77ca72f26
MD5 1854757b3e127614ae01b0b814762f5c
BLAKE2b-256 f14257e045eb555525c681dee9e065175355c394d049a55d69a16180bd5e7d4b

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: numpy-1.16.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 48241759b99d60aba63b0e590332c600fc4b46ad597c9b0a53f350b871ef0634
MD5 c6ab529b105181fc846a8245e5e4d048
BLAKE2b-256 ce6e29b67d4c4c33214bc559eb0a91fbb89c04700019292bf4c9ee1aa2986931

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 771147e654e8b95eea1293174a94f34e2e77d5729ad44aefb62fbf8a79747a15
MD5 bd3c27deac470bce5edf6936d08966b8
BLAKE2b-256 f6f3cc6c6745347c1e997cc3e58390584a250b8e22b6dfc45414a7d69a3df016

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 abbd6b1c2ef6199f4b7ca9f818eb6b31f17b73a6110aadc4e4298c3f00fab24e
MD5 7add5c07a1679bfc086d5575be26ccc6
BLAKE2b-256 71319f6721028067d2c0320bc9bf29a8319dc3a84808467511a3d401e22a74a4

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 54fe3b7ed9e7eb928bbc4318f954d133851865f062fa4bbb02ef8940bc67b5d2
MD5 ec4f2fd2180fd68647f38a0d4c331dcf
BLAKE2b-256 5aeaf524e88a6f9090caa633fc76f61c3cb28d9c1814be9a440750916e4d7dc3

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 88a72c1e45a0ae24d1f249a529d9f71fe82e6fa6a3fd61414b829396ec585900
MD5 d2b8da12f0855765e9cd3cc49d9885b9
BLAKE2b-256 e172179a78b565ecf01fe98dab6417581d30acac15c2d93c49f93169ebea99b1

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a61255a765b3ac73ee4b110b28fccfbf758c985677f526c2b4b39c48cc4b509d
MD5 98fb024d8d63f056ef7c82e772c4bfa0
BLAKE2b-256 54a17d919f227ce5793eb9c426576c877a0a37e39a9582e8d6731933655d6dc2

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 11.8 MB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 80d99399c97f646e873dd8ce87c38cfdbb668956bbc39bc1e6cac4b515bba2a0
MD5 88c1e91c6bd3626278b7938f12cafbe2
BLAKE2b-256 fd4551c0f436ac08f5dcbacdcf45ad16e0d32e866373bd876fac99986cc00794

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27m-win32.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 10.0 MB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 315fa1b1dfc16ae0f03f8fd1c55f23fd15368710f641d570236f3d78af55e340
MD5 b06d87509a2228c5952096cb11c8b007
BLAKE2b-256 36061feea5c3fdcced8847f3a80c9a912cc065bcdafc1cb3e34d63f21391950d

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 754a6be26d938e6ca91942804eb209307b73f806a1721176278a6038869a1686
MD5 91900b9172e39c039326c56cf0149e15
BLAKE2b-256 33676f2e00749faff1d314d5365e36be79cafee67021feb384029558b71b193d

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.5.1 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/2.7.15

File hashes

Hashes for numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0e2eed77804b2a6a88741f8fcac02c5499bba3953ec9c71e8b217fad4912c56c
MD5 c03c7365b58deefd03e3c080660d7157
BLAKE2b-256 823ac1d69682ee64aac572e7d9651030975a757d6bbaf45c962551b1f742dede

See more details on using hashes here.

File details

Details for the file numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 b78a1defedb0e8f6ae1eb55fa6ac74ab42acc4569c3a2eacc2a407ee5d42ebcb
MD5 7039dd60e2066e8882149a8b8bd6cf2f
BLAKE2b-256 6e36e8369aa628b29f50211ba82daec31cc110f6627feca160bc11b0e4ee1191

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page