NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.16.3.zip
(5.1 MB
view hashes)
Built Distributions
numpy-1.16.3-cp37-cp37m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.3-cp36-cp36m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.3-cp35-cp35m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.3-cp27-cp27m-win32.whl
(10.0 MB
view hashes)
Close
Hashes for numpy-1.16.3-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a4f4460877a16ac73302a9c077ca545498d9fe64e6a81398d8e1a67e4695e3df |
|
MD5 | 370ec58a5fdfe9e7ffe90857577806c6 |
|
BLAKE2b-256 | 4e9dc129d78e6b942303b762ccfdf1f8339de80c5e6021b14ef0c99ec5bdc6aa |
Close
Hashes for numpy-1.16.3-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfef82c43b8b29ca436560d51b2251d5117818a8d1fb74a8384a83c096745dad |
|
MD5 | c7e8e9f9ded13b1356e72cd8506df224 |
|
BLAKE2b-256 | ab759ac63977cbca68e17406a53a8c573a925a16771800be47a73f18c838f3fb |
Close
Hashes for numpy-1.16.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a8f021c70e6206c317974c93eaaf9bc2b56295b6b1cacccf88846e44a1f33fc |
|
MD5 | 4e907ac7d841018c0a9130ca45d099ee |
|
BLAKE2b-256 | bb7624e9f32c78e6f6fb26cf2596b428f393bf015b63459468119f282f70a7fd |
Close
Hashes for numpy-1.16.3-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d5fcea4f5ed40c3280791d54da3ad2ecf896f4c87c877b113576b8280c59441 |
|
MD5 | fe3421cbae83004e7feca4d90043e9df |
|
BLAKE2b-256 | 894dfe1c50ca7082cb2f170723ba25ed24eda3390729343f442a56007828f447 |
Close
Hashes for numpy-1.16.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1c666f04553ef70fda54adf097dbae7080645435fc273e2397f26bbf1d127bbb |
|
MD5 | 00594b150e69d1776164ffa60d7fdc01 |
|
BLAKE2b-256 | 436e71a3af8680a159a141fab5b4d19988111a09c02ffbfdeb42175cca0fa341 |
Close
Hashes for numpy-1.16.3-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1f46532afa7b2903bfb1b79becca2954c0a04389d19e03dc73f06b039048ac40 |
|
MD5 | 9ba2467b05eb4471817509cabff1b9a6 |
|
BLAKE2b-256 | 2e11f006363050b24fb19a235e5efd219e7ac549398d531110d80b8f2ba3a909 |
Close
Hashes for numpy-1.16.3-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d160e57731fcdec2beda807ebcabf39823c47e9409485b5a3a1db3a8c6ce763e |
|
MD5 | 773f9e76235ab5edd9ef1c083e62ea9f |
|
BLAKE2b-256 | 8a6afe84d045cd21e4ee0624a2bddeddba47191c2680f4beb3581b6f79c04976 |
Close
Hashes for numpy-1.16.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4b4f2924b36d857cf302aec369caac61e43500c17eeef0d7baacad1084c0ee84 |
|
MD5 | 453f5996ac600c4085656e82005fb0e5 |
|
BLAKE2b-256 | c1e24db8df8f6cddc98e7d7c537245ef2f4e41a1ed17bf0c3177ab3cc6beac7f |
Close
Hashes for numpy-1.16.3-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fde5c2a3a682a9e101e61d97696687ebdba47637611378b4127fe7e47fdf2bf |
|
MD5 | 93a2a4b48f160ffd1bdd30023b842be2 |
|
BLAKE2b-256 | eeefb442674cd2b54499be88eeacd031c81d94a1fc8e02e7ac28e80fe2a75f9d |
Close
Hashes for numpy-1.16.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ab4896a8c910b9a04c0142871d8800c76c8a2e5ff44763513e1dd9d9631ce897 |
|
MD5 | b23b0727562be62ffd943c7828822da9 |
|
BLAKE2b-256 | ae764a4c012bca5688881c18f6e04694d221b88daa5d38526a4df87d75711199 |
Close
Hashes for numpy-1.16.3-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b16d88da290334e33ea992c56492326ea3b06233a00a1855414360b77ca72f26 |
|
MD5 | 1854757b3e127614ae01b0b814762f5c |
|
BLAKE2b-256 | f14257e045eb555525c681dee9e065175355c394d049a55d69a16180bd5e7d4b |
Close
Hashes for numpy-1.16.3-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48241759b99d60aba63b0e590332c600fc4b46ad597c9b0a53f350b871ef0634 |
|
MD5 | c6ab529b105181fc846a8245e5e4d048 |
|
BLAKE2b-256 | ce6e29b67d4c4c33214bc559eb0a91fbb89c04700019292bf4c9ee1aa2986931 |
Close
Hashes for numpy-1.16.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 771147e654e8b95eea1293174a94f34e2e77d5729ad44aefb62fbf8a79747a15 |
|
MD5 | bd3c27deac470bce5edf6936d08966b8 |
|
BLAKE2b-256 | f6f3cc6c6745347c1e997cc3e58390584a250b8e22b6dfc45414a7d69a3df016 |
Close
Hashes for numpy-1.16.3-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | abbd6b1c2ef6199f4b7ca9f818eb6b31f17b73a6110aadc4e4298c3f00fab24e |
|
MD5 | 7add5c07a1679bfc086d5575be26ccc6 |
|
BLAKE2b-256 | 71319f6721028067d2c0320bc9bf29a8319dc3a84808467511a3d401e22a74a4 |
Close
Hashes for numpy-1.16.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54fe3b7ed9e7eb928bbc4318f954d133851865f062fa4bbb02ef8940bc67b5d2 |
|
MD5 | ec4f2fd2180fd68647f38a0d4c331dcf |
|
BLAKE2b-256 | 5aeaf524e88a6f9090caa633fc76f61c3cb28d9c1814be9a440750916e4d7dc3 |
Close
Hashes for numpy-1.16.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 88a72c1e45a0ae24d1f249a529d9f71fe82e6fa6a3fd61414b829396ec585900 |
|
MD5 | d2b8da12f0855765e9cd3cc49d9885b9 |
|
BLAKE2b-256 | e172179a78b565ecf01fe98dab6417581d30acac15c2d93c49f93169ebea99b1 |
Close
Hashes for numpy-1.16.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a61255a765b3ac73ee4b110b28fccfbf758c985677f526c2b4b39c48cc4b509d |
|
MD5 | 98fb024d8d63f056ef7c82e772c4bfa0 |
|
BLAKE2b-256 | 54a17d919f227ce5793eb9c426576c877a0a37e39a9582e8d6731933655d6dc2 |
Close
Hashes for numpy-1.16.3-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80d99399c97f646e873dd8ce87c38cfdbb668956bbc39bc1e6cac4b515bba2a0 |
|
MD5 | 88c1e91c6bd3626278b7938f12cafbe2 |
|
BLAKE2b-256 | fd4551c0f436ac08f5dcbacdcf45ad16e0d32e866373bd876fac99986cc00794 |
Close
Hashes for numpy-1.16.3-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 315fa1b1dfc16ae0f03f8fd1c55f23fd15368710f641d570236f3d78af55e340 |
|
MD5 | b06d87509a2228c5952096cb11c8b007 |
|
BLAKE2b-256 | 36061feea5c3fdcced8847f3a80c9a912cc065bcdafc1cb3e34d63f21391950d |
Close
Hashes for numpy-1.16.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 754a6be26d938e6ca91942804eb209307b73f806a1721176278a6038869a1686 |
|
MD5 | 91900b9172e39c039326c56cf0149e15 |
|
BLAKE2b-256 | 33676f2e00749faff1d314d5365e36be79cafee67021feb384029558b71b193d |
Close
Hashes for numpy-1.16.3-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0e2eed77804b2a6a88741f8fcac02c5499bba3953ec9c71e8b217fad4912c56c |
|
MD5 | c03c7365b58deefd03e3c080660d7157 |
|
BLAKE2b-256 | 823ac1d69682ee64aac572e7d9651030975a757d6bbaf45c962551b1f742dede |
Close
Hashes for numpy-1.16.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b78a1defedb0e8f6ae1eb55fa6ac74ab42acc4569c3a2eacc2a407ee5d42ebcb |
|
MD5 | 7039dd60e2066e8882149a8b8bd6cf2f |
|
BLAKE2b-256 | 6e36e8369aa628b29f50211ba82daec31cc110f6627feca160bc11b0e4ee1191 |