NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.16.5.zip
(5.1 MB
view hashes)
Built Distributions
numpy-1.16.5-cp37-cp37m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.5-cp36-cp36m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.5-cp35-cp35m-win32.whl
(10.0 MB
view hashes)
numpy-1.16.5-cp27-cp27m-win32.whl
(10.0 MB
view hashes)
Close
Hashes for numpy-1.16.5-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb207362394567343d84c0462ec3ba203a21c78be9a0fdbb94982e76859ec37e |
|
MD5 | 5287ce297cd8093463bb29bef42db103 |
|
BLAKE2b-256 | f4f6aa112f76ada64787f677278218738bb895e9642118b1e8db68c7edd66ec2 |
Close
Hashes for numpy-1.16.5-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46469e7fcb689036e72ce61c3d432ed35eb4c71b5119e894845b434b0fae5813 |
|
MD5 | 33b7fd0d727c9f09d61879afde8096f6 |
|
BLAKE2b-256 | f081ba81dcd3da5408ab545b72f50e4ce46a896dd479b897e6b6dd2a33efbeb1 |
Close
Hashes for numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f7fb27c0562206787011cf299c03f663c604b58a35a9c2b5218ba6485a17b145 |
|
MD5 | 7856a32b3b2d93d018d2ba5dce941ffa |
|
BLAKE2b-256 | 985be1bf225ed4614b6a482ea783f75ce571b0d440ba247f6f52c0b7347d6e18 |
Close
Hashes for numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3d6a354bb1a1ce2cabd47e0bdcf25364322fb55a29efb59f76944d7ee546d8b6 |
|
MD5 | 0713da36acc884897f76bc8117ca7a42 |
|
BLAKE2b-256 | 7559ad0f1a1d84c12596922c26eed952ab000da54b0ac0cfa2b6f76b0d4cba4e |
Close
Hashes for numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 00836128feaf9a7c7fedeea05ad593e7965f523d23fe3ffbf20cfffd88e9f2b1 |
|
MD5 | 394fee86faa235dea6d2bb6270961266 |
|
BLAKE2b-256 | df4a31fabb0aa44b6d822817ca401fcd3ba46e431214c6676ef5644c324970e4 |
Close
Hashes for numpy-1.16.5-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a2b950bca9faca0145491ae9fd214c432f2b1e36783399bc2c3732e7bcc94f4 |
|
MD5 | 2712434cdfb27a301c49cf97eee656d5 |
|
BLAKE2b-256 | 4c7b42bee615e731b54021d6e530573a3c6e7cbf16dd54a9ef7c9887d3324c14 |
Close
Hashes for numpy-1.16.5-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e6ce7c0051ed5443f8343da2a14580aa438822ae6526900332c4564f371d2aaf |
|
MD5 | 752e461d193b7049e25c7e20f7d4808a |
|
BLAKE2b-256 | 98b5c55b6dc028ceb49d11372540347a58b316a9ea2feeb01b120323f44bcb4d |
Close
Hashes for numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ceb353e3ae840ce76256935b18c17236ca808509f231f41d5173d7b2680d5e77 |
|
MD5 | ab726a4244e9e070cde814d8415cff4c |
|
BLAKE2b-256 | 988741283370f942f647422581eed16df4b653a744a3e9d5cfbb9aee0440f6eb |
Close
Hashes for numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 911d91ffc6688db0454d69318584415f7dfb0fc1b8ac9b549234e39495684230 |
|
MD5 | 12cbf61ed2abec3f77cfa3a46b7e4bdc |
|
BLAKE2b-256 | 5733aa1b4ccf4699efebe75dbaffe12a416a2e8b5bc4687929cc22fa95dc4e26 |
Close
Hashes for numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03b28330253904d410c3c82d66329f29645eb54a7345cb7dd7a1529d61fa603f |
|
MD5 | 2ae22b506a07575a4bc6a91d2db25df5 |
|
BLAKE2b-256 | a8479e0a5af8338286eb36e9c56b20e9c1da2a7e9c71bcdab3a54a3063aa92d5 |
Close
Hashes for numpy-1.16.5-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 27aa457590268cb059c47daa8c55f48c610ce81da8a062ec117f74efa9124ec9 |
|
MD5 | 756b7ff320ef821f2cd279c5df7c9f46 |
|
BLAKE2b-256 | bd266d993ddc14a4254542224279a6d6c06266a5b2fbb01d013682f23ab341eb |
Close
Hashes for numpy-1.16.5-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ada1a1cd68b9874fa480bd287438f92bd7ce88ca0dd6e8d56c70f2b3dab97314 |
|
MD5 | 2912ba9109dca60115dba59606cac27b |
|
BLAKE2b-256 | 6dfe0c3fdd7b41c6c4692607ed909fc75757994149290a2d59233fd3866629ee |
Close
Hashes for numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fada0492dd35412cd96e0578677e9a4bdae8f102ef2b631301fcf19066b57119 |
|
MD5 | 401e053e98faada4bc8cdcc9b04d619f |
|
BLAKE2b-256 | 9077dfbecd33553dd939c65e5590899901ade014329a3be9edf5d287686d199c |
Close
Hashes for numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbc9e9a6a5e0c4f57498855d4e30ef8b599c0ce13fdf9d64299197508d67d9e8 |
|
MD5 | 85a7db0c597037cced7ab82c0f0cdcc8 |
|
BLAKE2b-256 | 6f53a1cb5761ee5442f72137354ec49c3bcd22dc1a855ecd495b7587878e12ad |
Close
Hashes for numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 612297115bade249a118616c065597ff2e5e1f47ed220d7ba71f3e6c6ebcd814 |
|
MD5 | fa48e45bd3e5dbac923296b039e70706 |
|
BLAKE2b-256 | 962054dfb36f3b6b9f2640aa525f728ea3975c789aea6ae59bcb267487976539 |
Close
Hashes for numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a96e59f61c7a8f8838d0f4d19daeba551c5f07c5cdd5c81e8e9d4089ade0042 |
|
MD5 | d6fd33607099abdea62752cf303a1763 |
|
BLAKE2b-256 | d7b13367ea1f372957f97a6752ec725b87886e12af1415216feec9067e31df70 |
Close
Hashes for numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2c5a556272c67566e8f4607d1c78ad98e954fa6c32802002a4a0b029ad8dd759 |
|
MD5 | 5b4f83c092257f6c98bedd44505e7b6d |
|
BLAKE2b-256 | 017ec9e4e33f2ec4e5193cd2df2b5b44af395de06814d5a2c0b7068c9d13d3e7 |
Close
Hashes for numpy-1.16.5-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1594aec94e4896e0688f4f405481fda50fb70547000ae71f2e894299a088a661 |
|
MD5 | d36b67522ee102b7865a83b26a1d97aa |
|
BLAKE2b-256 | 4883203c397ecec78bdd618a0fb04a47482cfa2ae5ea2c6d428ed94258fe8671 |
Close
Hashes for numpy-1.16.5-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4d790e2a37aa3350667d8bb8acc919010c7e46234c3d615738564ddc6d22026f |
|
MD5 | 2f6fd50a02da9d56e3d950a6b738337e |
|
BLAKE2b-256 | 4f473ce61b9a00d1cce9500cca7a88e9b7105a1f6434be9ceaa748e09835b367 |
Close
Hashes for numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4208b225ae049641a7a99ab92e84ce9d642ded8250d2b6c9fd61a7fa8c072561 |
|
MD5 | df4ab8600495131e44ad1b173f6cc9fc |
|
BLAKE2b-256 | a1f758f1f50fe4fb9a7a8b53118639967a26544c7c9e84369467162de256a720 |
Close
Hashes for numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f42e21d8db16315bc30b437bff63d6b143befb067b8cd396fa3ef17f1c21e1a0 |
|
MD5 | 6fbf51644f8722fa90276c04fe3d031f |
|
BLAKE2b-256 | b24ad622eec89ee45a0084d2a13e023e596931828ba9d117c142b773b96f4438 |
Close
Hashes for numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37fdd3bb05caaaacac58015cfa38e38b006ee9cef1eaacdb70bb68c16ac7db1d |
|
MD5 | cf7ff97464eb044cb49618be5fe29aee |
|
BLAKE2b-256 | 51678907005262f493e356195bcbd61b41988eecf63cb1d97ea2f6e55fe24205 |