NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.17.0.zip
(6.5 MB
view hashes)
Built Distributions
numpy-1.17.0-cp37-cp37m-win32.whl
(10.8 MB
view hashes)
numpy-1.17.0-cp36-cp36m-win32.whl
(10.8 MB
view hashes)
numpy-1.17.0-cp35-cp35m-win32.whl
(10.7 MB
view hashes)
Close
Hashes for numpy-1.17.0-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be39cca66cc6806652da97103605c7b65ee4442c638f04ff064a7efd9a81d50a |
|
MD5 | 1ffa1bc110de363748a849a35126d9ff |
|
BLAKE2b-256 | 262673ba03b2206371cdef62afebb877e9ba90a1f0dc3d9de22680a3970f5a50 |
Close
Hashes for numpy-1.17.0-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ec0c56eae6cee6299f41e780a0280318a93db519bbb2906103c43f3e2be1206c |
|
MD5 | 0da9af1ac3832ae8b94f5fdce31c8c7d |
|
BLAKE2b-256 | f93fd75fc983cc420b2acb5fae446b950e2dc9e5395a79fa76859d2528352d2c |
Close
Hashes for numpy-1.17.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d36f7c53ae741e23f54793ffefb2912340b800476eb0a831c6eb602e204c5c4 |
|
MD5 | a245e8fc884fcd6ad1c53c322496cace |
|
BLAKE2b-256 | 054b55cfbfd3e5e85016eeef9f21c0ec809d978706a0d60b62cc28aeec8c792f |
Close
Hashes for numpy-1.17.0-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 312bb18e95218bedc3563f26fcc9c1c6bfaaf9d453d15942c0839acdd7e4c473 |
|
MD5 | 49ae9d7440e5dbabf3e02eba5b4bb8cd |
|
BLAKE2b-256 | 1364121de962de9bc7da56c5c70b088727b1c04d12ab58b7abca100953d95968 |
Close
Hashes for numpy-1.17.0-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f4e4612de60a4f1c4d06c8c2857cdcb2b8b5289189a12053f37d3f41f06c60d0 |
|
MD5 | c6501eed55a840b2c81b211d6cf5065e |
|
BLAKE2b-256 | c14b78119133136c20e5ad2e01bf72b0633241defd619939908223cd394a9c32 |
Close
Hashes for numpy-1.17.0-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3ab2d835b95ccb59d11dfcd56eb0480daea57cdf95d686d22eff35584bc4554 |
|
MD5 | b7efb94a9cf4cc864ea546fb21a4d6bf |
|
BLAKE2b-256 | b7c1a58630a439aa10a285169b4a122bc9f7a9a4392e4ec39602f0a60b2693db |
Close
Hashes for numpy-1.17.0-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 03e311b0a4c9f5755da7d52161280c6a78406c7be5c5cc7facfbcebb641efb7e |
|
MD5 | feeecc8ea0bbc37b2f0be447b32a478f |
|
BLAKE2b-256 | 94d5fd11304513bee27cca036c1b68b3300f49b4c73d3a1c69e32dc1e325cc68 |
Close
Hashes for numpy-1.17.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9588c6b4157f493edeb9378788dcd02cb9e6a6aeaa518b511a1c79d06cbd8094 |
|
MD5 | 4db1ecda4fbc202722774599cb434378 |
|
BLAKE2b-256 | 19b9bda9781f0a74b90ebd2e046fde1196182900bd4a8e1ea503d3ffebc50e7c |
Close
Hashes for numpy-1.17.0-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | eb0fc4a492cb896346c9e2c7a22eae3e766d407df3eb20f4ce027f23f76e4c54 |
|
MD5 | c996484b56aefecfe3626bcaca88a187 |
|
BLAKE2b-256 | 764bcf8e724224715aed1f8cd38b5b5bc0dc758b4bd6fb608b528171bd418d85 |
Close
Hashes for numpy-1.17.0-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 464b1c48baf49e8505b1bb754c47a013d2c305c5b14269b5c85ea0625b6a988a |
|
MD5 | 101e88a9870a5046536f71d77d0a7f5c |
|
BLAKE2b-256 | bee845079ae05c4dda4a67bc51578ae5e75feda0a79c2836d477d676e7a58efb |
Close
Hashes for numpy-1.17.0-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5adfde7bd3ee4864536e230bcab1c673f866736698724d5d28c11a4d63672658 |
|
MD5 | e919d45495558d93275ef4ab724f767a |
|
BLAKE2b-256 | e04649aea53340775e5294dacc8072062b5a1c21dd27746cb336afa395abb70c |
Close
Hashes for numpy-1.17.0-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0cdd229a53d2720d21175012ab0599665f8c9588b3b8ffa6095dd7b90f0691dd |
|
MD5 | ab16f4b7f83e64113bf118ae3a9414b9 |
|
BLAKE2b-256 | 7f50d772e78172520324f835efd1ea77d1b339fe9fa5c0db3de00750bc07e64b |
Close
Hashes for numpy-1.17.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7724e9e31ee72389d522b88c0d4201f24edc34277999701ccd4a5392e7d8af61 |
|
MD5 | 71066029b28fa03b897fd960be6dc6a9 |
|
BLAKE2b-256 | 6925eef8d362bd216b11e7d005331a3cca3d19b0aa57569bde680070109b745c |
Close
Hashes for numpy-1.17.0-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9ce8300950f2f1d29d0e49c28ebfff0d2f1e2a7444830fbb0b913c7c08f31511 |
|
MD5 | 526c60c36c61b7d30e6a50ffad3e81a2 |
|
BLAKE2b-256 | 01c4850d2a34f2bfd043fa6a8231392b7803d14b940bc188e3eeccd60c60b07f |
Close
Hashes for numpy-1.17.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 910d2272403c2ea8a52d9159827dc9f7c27fb4b263749dca884e2e4a8af3b302 |
|
MD5 | 5ac469e3c2cd9b34c2a906d48544f491 |
|
BLAKE2b-256 | 4a2ecf0a2fea6d97604a0e058e804b50d589c31b360b317be9f5c126b22a560e |