NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
numpy-1.18.5.zip
(5.4 MB
view hashes)
Built Distributions
numpy-1.18.5-cp38-cp38-win32.whl
(10.8 MB
view hashes)
numpy-1.18.5-cp37-cp37m-win32.whl
(10.8 MB
view hashes)
numpy-1.18.5-cp36-cp36m-win32.whl
(10.8 MB
view hashes)
numpy-1.18.5-cp35-cp35m-win32.whl
(10.7 MB
view hashes)
Close
Hashes for numpy-1.18.5-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3dd6823d3e04b5f223e3e265b4a1eae15f104f4366edd409e5a5e413a98f911f |
|
MD5 | 81c9e86442602529b3c52d4af7a515b7 |
|
BLAKE2b-256 | 22cb21a148329591931d8764e7ef49cb19586dd5b5e002a184988cb5ec1ccba9 |
Close
Hashes for numpy-1.18.5-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c9d6531bc1886454f44aa8f809268bc481295cf9740827254f53c30104f074a |
|
MD5 | b66c03695208dd843b78acb32557a765 |
|
BLAKE2b-256 | 8a52daf6f4b7fd1499c153cb25ff84f87421598d95e5bb5b760585d2c0263773 |
Close
Hashes for numpy-1.18.5-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4674f7d27a6c1c52a4d1aa5f0881f1eff840d2206989bae6acb1c7668c02ebfb |
|
MD5 | 2347f759a1b8bc27423bb5ece6ae1c79 |
|
BLAKE2b-256 | 01c687592f924246da1e58673cf708a2748754517c5cf050726238d6cfbd8df4 |
Close
Hashes for numpy-1.18.5-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3676abe3d621fc467c4c1469ee11e395c82b2d6b5463a9454e37fe9da07cd0d7 |
|
MD5 | 1715c674b3070ccd90f56fa2cd48cce1 |
|
BLAKE2b-256 | ae324382f0ed2723ee04a73e23d6ba9a03c4d09cc1189908756084ccef3305a4 |
Close
Hashes for numpy-1.18.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e15b382603c58f24265c9c931c9a45eebf44fe2e6b4eaedbb0d025ab3255228b |
|
MD5 | 2b9153362bf0e53574abc2df048a1578 |
|
BLAKE2b-256 | 6d779492f79d58c9abb8a3a93a40ab661ca7f64169a6010ea1365a51294bd64a |
Close
Hashes for numpy-1.18.5-cp37-cp37m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0172304e7d8d40e9e49553901903dc5f5a49a703363ed756796f5808a06fc233 |
|
MD5 | 8b793d97dae258d06e63c452a2684b16 |
|
BLAKE2b-256 | e4017a26148f7de9eb6c27f95b29eba16b7e820827cb9ebaae182d7483e44711 |
Close
Hashes for numpy-1.18.5-cp37-cp37m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cae14a01a159b1ed91a324722d746523ec757357260c6804d11d6147a9e53e3f |
|
MD5 | 08bdf2289600c5c728a2668b585fdd02 |
|
BLAKE2b-256 | 232e41a977865a8ad0ac98b3f9ae421415cd2cd3f195b179a6b5f3aafb7922d7 |
Close
Hashes for numpy-1.18.5-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b39321f1a74d1f9183bf1638a745b4fd6fe80efbb1f6b32b932a588b4bc7695f |
|
MD5 | f261237ab3d47b9b6e859bf240014a48 |
|
BLAKE2b-256 | d6c658e517e8b1fb192725cfa23c01c2e60e4e6699314ee9684a1c5f5c9b27e1 |
Close
Hashes for numpy-1.18.5-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cd49930af1d1e49a812d987c2620ee63965b619257bd76eaaa95870ca08837cf |
|
MD5 | 97f27a6e2e6951cf8107132e7c628004 |
|
BLAKE2b-256 | 0ce10a99a7f1f7ade384ec1ac647534f2cccf480a863dafbc96097488fda004b |
Close
Hashes for numpy-1.18.5-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a7acefddf994af1aeba05bbbafe4ba983a187079f125146dc5859e6d817df824 |
|
MD5 | bc1ebaa1ecf20f22b72cbb824c9cbc21 |
|
BLAKE2b-256 | 3e000266fefaafb839760d5b25b884375b2ab0f842ebe138ee6c1ef807af44bb |
Close
Hashes for numpy-1.18.5-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b03b2c0badeb606d1232e5f78852c102c0a7989d3a534b3129e7856a52f3d161 |
|
MD5 | acfa82d4e66601386dad19ad3a3983a5 |
|
BLAKE2b-256 | dc18e69ef84530360c2d39db51acb4cc0012990f27fb1fa7542dac45ad30e7ab |
Close
Hashes for numpy-1.18.5-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4064f53d4cce69e9ac613256dc2162e56f20a4e2d2086b1956dd2fcf77b7fac5 |
|
MD5 | 9188a301a9640836322f2dc926640515 |
|
BLAKE2b-256 | 6ff26b9074c4e4d08196d8b373702c16f84978196dc627298e710af7b03c09e4 |
Close
Hashes for numpy-1.18.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f718a7949d1c4f622ff548c572e0c03440b49b9531ff00e4ed5738b459f011e8 |
|
MD5 | 259dbb8694209921d56ffb091ae42b5b |
|
BLAKE2b-256 | b3a9b1bc4c935ed063766bce7d3e8c7b20bd52e515ff1c732b02caacf7918e5a |
Close
Hashes for numpy-1.18.5-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef627986941b5edd1ed74ba89ca43196ed197f1a206a3f18cc9faf2fb84fd675 |
|
MD5 | 402be8c771c2541c7ee936ef63c9ebc0 |
|
BLAKE2b-256 | 50f45db156e455543c184115e13b28c8c080e4bbc8af9e7f4dfeaae3ebbf74c1 |
Close
Hashes for numpy-1.18.5-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac792b385d81151bae2a5a8adb2b88261ceb4976dbfaaad9ce3a200e036753dc |
|
MD5 | caef5b4785e5deb6891f118a49d48ccc |
|
BLAKE2b-256 | ae47fc66812fec2cdbdac2cdbc7788ce55fb2072bae5326279079fb00b765b50 |
Close
Hashes for numpy-1.18.5-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 965df25449305092b23d5145b9bdaeb0149b6e41a77a7d728b1644b3c99277c1 |
|
MD5 | 5a93e72e30c56462492a29315e19c0cc |
|
BLAKE2b-256 | ed09ff8f529a5548ff788765f66a81ef751130f26f8c7d517e94d3dbf3ba1ed5 |
Close
Hashes for numpy-1.18.5-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a87f59508c2b7ceb8631c20630118cc546f1f815e034193dc72390db038a5cb3 |
|
MD5 | 2cc7cc1b1640d6b50c50d96a35624698 |
|
BLAKE2b-256 | 46044ceccf9b04f89f32bfc2976ebf6c35488c1d6a4b5d375dc4d3137c967386 |
Close
Hashes for numpy-1.18.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a78e438db8ec26d5d9d0e584b27ef25c7afa5a182d1bf4d05e313d2d6d515271 |
|
MD5 | d5bf77d6caf4f83ed871ab9e4f9d1f72 |
|
BLAKE2b-256 | b53688723426b4ff576809fec7d73594fe17a35c27f8d01f93637637a29ae25b |
Close
Hashes for numpy-1.18.5-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7d42ab8cedd175b5ebcb39b5208b25ba104842489ed59fbb29356f671ac93583 |
|
MD5 | 79990253bda9ffa2db75152e77c318e9 |
|
BLAKE2b-256 | e70d2f062df1cf227372d0bfc22edfe2451cda972a38185a5748028326c517c3 |
Close
Hashes for numpy-1.18.5-cp35-cp35m-macosx_10_9_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e91d31b34fc7c2c8f756b4e902f901f856ae53a93399368d9a0dc7be17ed2ca0 |
|
MD5 | f923519347ba9f6bca59dce0583bdbd5 |
|
BLAKE2b-256 | 85932d19421e0f70b2fd4a1b6f86ff739dd2ce3cea6cab50b2b5f792045388b4 |