Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.19.4.zip (7.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl (13.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.19.4-cp39-cp39-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.19.4-cp39-cp39-win32.whl (11.0 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.9

numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9

numpy-1.19.4-cp39-cp39-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.9

numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.19.4-cp38-cp38-win_amd64.whl (13.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.19.4-cp38-cp38-win32.whl (11.0 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.8

numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.8

numpy-1.19.4-cp38-cp38-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.8

numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.19.4-cp37-cp37m-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.19.4-cp37-cp37m-win32.whl (11.0 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.7m

numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.7m

numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.7m

numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

numpy-1.19.4-cp36-cp36m-win_amd64.whl (12.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

numpy-1.19.4-cp36-cp36m-win32.whl (11.0 MB view details)

Uploaded CPython 3.6m Windows x86

numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl (12.2 MB view details)

Uploaded CPython 3.6m

numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl (14.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl (12.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.6m

numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl (11.5 MB view details)

Uploaded CPython 3.6m

numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file numpy-1.19.4.zip.

File metadata

  • Download URL: numpy-1.19.4.zip
  • Upload date:
  • Size: 7.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4.zip
Algorithm Hash digest
SHA256 141ec3a3300ab89c7f2b0775289954d193cc8edb621ea05f99db9cb181530512
MD5 d40f6fcf611ab40eed4ff90606e05307
BLAKE2b-256 c563a48648ebc57711348420670bb074998f79828291f68aebfff1642be212ec

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 13.9 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2a2740aa9733d2e5b2dfb33639d98a64c3b0f24765fed86b0fd2aec07f6a0a08
MD5 673234a8dc2d3d3912c24c64aef6263e
BLAKE2b-256 e56129b55ba3ae8261a7b58ef8fc2ea37f7bc52418e17fbcf9b970f8685d3118

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4377e10b874e653fe96985c05feed2225c912e328c8a26541f7fc600fb9c637b
MD5 55c735347e8fb2ce3674243b38b3cee3
BLAKE2b-256 9bcdde16d2e7ce894e8a4baa3297b95775e3f194a0b8bb9b3ea6afe85f36cc08

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8cac8790a6b1ddf88640a9267ee67b1aee7a57dfa2d2dd33999d080bc8ee3a0f
MD5 7bc02e21133a1b82994c81c7521156a8
BLAKE2b-256 cbeb083a3c50d5e85b6d985b20ad7fe1b6a62e70b2cec6daaf5aed7e431101db

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c42c4b73121caf0ed6cd795512c9c09c52a7287b04d105d112068c1736d7c753
MD5 5d678c6cc45ee3ee976e8b3b2ebe9c13
BLAKE2b-256 f09dd73a7d7fe96b2658bf37e97376d56f688c1a1bf65691dcfbfe8fd5c9d56d

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f0d3929fe88ee1c155129ecd82f981b8856c5d97bcb0d5f23e9b4242e79d1de3
MD5 5ac2071e995ff4fc066741b1edcc159c
BLAKE2b-256 dfac53590ad20fe1ea57145fd99ba4b89d2c340a5e07ca939e6a4ccd1d198d05

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 50e86c076611212ca62e5a59f518edafe0c0730f7d9195fec718da1a5c2bb1fc
MD5 4d4e5f147fe6fdedbdde4df9eaf2a4b1
BLAKE2b-256 7f0e16d35aeac0284300ee1ed623d78e4d4f4a55c31bf34e1e9cb1b15062c64b

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a09f98011236a419ee3f49cedc9ef27d7a1651df07810ae430a6b06576e0b414
MD5 132e95910d76b045caf1883146ec34a6
BLAKE2b-256 258b8e81cd8c91ffe85bbc4b4b2af007b379d16e8966964eb2239633a77be18e

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a5d897c14513590a85774180be713f692df6fa8ecf6483e561a6d47309566f37
MD5 d263c7d04c46d5ecca3b32ad11925bad
BLAKE2b-256 03fe0767f9a24a026f79822045d60b252e117aed5883ab35e5519c9689127557

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e452dc66e08a4ce642a961f134814258a082832c78c90351b75c41ad16f79f63
MD5 ae1e4a06e721e83b530860835c708690
BLAKE2b-256 6249049fa5f7c144b3705eff104e4f29b6703640e7dbff181c9d4cd1169637b6

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 09c12096d843b90eafd01ea1b3307e78ddd47a55855ad402b157b6c4862197ce
MD5 27eb1b83f3cac67fb26c7fe9a25b0635
BLAKE2b-256 40db5060f18b0116f00ee73f8365efc9c95bd5496946290b0e7c97b6ee89dffe

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5734bdc0342aba9dfc6f04920988140fb41234db42381cf7ccba64169f9fe7ac
MD5 949a5f9e9a75b9cbb3c74e4bf4eb0683
BLAKE2b-256 b1a6e570ac0fdc466491b2c5d54dc3373292de50b5a326f383909a6cfa224fbe

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08308c38e44cc926bdfce99498b21eec1f848d24c302519e64203a8da99a97db
MD5 4f1b335dfe5c7fcf5c8c89983cef9f0b
BLAKE2b-256 1a076c01ec85918b64a69c54b2f36baffe168a5d4f73f485a33513b2f4a799ca

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1aeef46a13e51931c0b1cf8ae1168b4a55ecd282e6688fdb0a948cc5a1d5afb9
MD5 79354b01e11789bb5d12c9edc754297b
BLAKE2b-256 e57dfe25dcdfc46d14e037cbb87e480ac067da36f56a8e65928bf1040ff35793

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ec149b90019852266fec2341ce1db513b843e496d5a8e8cdb5ced1923a92faab
MD5 6a66109907b356ddd67f1e282e1879e6
BLAKE2b-256 81cd7eb45744bc0ccec7520946cb5a039ce5420c2736c12eea8d6935c04e0883

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f29454410db6ef8126c83bd3c968d143304633d45dc57b51252afbd79d700893
MD5 01c2f102e73b2569cf3ebe5eab112c4e
BLAKE2b-256 770b41e345a4f224aa4328bf8a640eeeea1b2ad0d61517f7d0890f167c2b5deb

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 edb01671b3caae1ca00881686003d16c2209e07b7ef8b7639f1867852b948f7c
MD5 e619d04f2ac42a9feb0efcc1d9901d94
BLAKE2b-256 e51d256ec8f88dec5e4afe0cbbfff94499198fe99220399ed895a241ba59dd3e

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb1017eec5257e9ac6209ac172058c430e834d5d2bc21961dceeb79d111e5909
MD5 2f52c91231b2b3c54535dee98a5ad0a3
BLAKE2b-256 0bbca5eecf00251948d1c31434c6164368767e5c860984a99ca571ae505c37ea

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9eeb7d1d04b117ac0d38719915ae169aa6b61fca227b0b7d198d43728f0c879c
MD5 a73acaea97da74db366372b3d70219a7
BLAKE2b-256 5fa524db9dd5c4a8b6c8e495289f17c28e55601769798b0e2e5a5aeb2abd247b

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6ae6c680f3ebf1cf7ad1d7748868b39d9f900836df774c453c11c5440bc15b36
MD5 ce6c1cd93d5fc56d0de608b84cc14a7e
BLAKE2b-256 7b05558d6ac441c3c84ec413ba85f5f8e978283b4d105e4a56cff0f2c46b4134

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d7593a705d662be5bfe24111af14763016765f43cb6923ed86223f965f52387
MD5 2e5c50e57cff5085ffb32185591e49ed
BLAKE2b-256 91db8090047d2468b93b6f345913d404189909aae5eea370b06aa22b4a7be656

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fe45becb4c2f72a0907c1d0246ea6449fe7a9e2293bb0e11c4e9a32bb0930a15
MD5 552839ea3bc2dfc98611254f8188feb8
BLAKE2b-256 a5bb87d668b353848b93baab0a64cddf6408c40717f099539668c3d26fe39f7e

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 18bed2bcb39e3f758296584337966e68d2d5ba6aab7e038688ad53c8f889f757
MD5 c40206040b8ddb62309cbef1cdf0fa82
BLAKE2b-256 8ca6cd56f1b645019ba5334b746ba137d54fe5494cd476bf85e434c8e9339cfe

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e5b6ed0f0b42317050c88022349d994fe72bfe35f5908617512cd8c8ef9da2a9
MD5 5524143ee95cc7e3400dbbff709de7cd
BLAKE2b-256 5ef29e562074f835b9b1227ca156f787be4554ae6bbe293c064337c4153cc4c8

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 16c1b388cc31a9baa06d91a19366fb99ddbe1c7b205293ed072211ee5bac1ed2
MD5 3c1ce8ca6f6f11ea9d49859b2ffb70cf
BLAKE2b-256 a9191c5bd9d281e35008709ac2f1c9697dc6f1c66f7f99a49e459db5b38b26cd

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27d3f3b9e3406579a8af3a9f262f5339005dd25e0ecf3cf1559ff8a49ed5cbf2
MD5 355d7f49b9e442f9e73580e64c8bf2c2
BLAKE2b-256 46091bae812d4afa67e365d3d1dbdc0e9071ba7678611f52b49353d6104ae8ff

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 12.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 448ebb1b3bf64c0267d6b09a7cba26b5ae61b6d2dbabff7c91b660c7eccf2bdb
MD5 25bc59391b8b4f06eb28e74e97afc488
BLAKE2b-256 3326c448c5203823d744b7e71b81c2b6dcbcd4bff972897ce989b437ee836b2b

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 11.0 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 13d166f77d6dc02c0a73c1101dd87fdf01339febec1030bd810dcd53fff3b0f1
MD5 9db8749b90405780614f126c77eef3bb
BLAKE2b-256 6452aedcf4abdbe33954fcd0b4c591c44b072ce5d7abaa90a8663604c960ebeb

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6c7bb82883680e168b55b49c70af29b84b84abb161cbac2800e8fcb6f2109b6
MD5 3b754c1135f7aa3e6a7c1f46af6a84c9
BLAKE2b-256 c60dffa6487298f7b626746fd1be54636075916888f30ea8d6e7d1c4cfaeb7f6

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.5 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ad6f2ff5b1989a4899bf89800a671d71b1612e5ff40866d1f4d8bcf48d4e5764
MD5 bb3f911ba616d36a2daff5b8e1402b1b
BLAKE2b-256 8786753182c9085ba4936c0076269a571613387cdb77ae2bf537448bfd63472c

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 64324f64f90a9e4ef732be0928be853eee378fd6a01be21a0a8469c4f2682c83
MD5 4af398903b0957ad3a40ec17631879ed
BLAKE2b-256 80a9ed99c4aedb00b16ebe9f097268b04a13a73bc1e6612115480afdb400869b

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.4 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8ece138c3a16db8c1ad38f52eb32be6086cc72f403150a79336eb2045723a1ad
MD5 2469be359c8c383509eaded8e758488a
BLAKE2b-256 a6fc36e52d0ae2aa502b211f1bcd2fdeec72d343d58224eabcdddc1bcb052db1

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 11.5 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fedbd128668ead37f33917820b704784aff695e0019309ad446a6d0b065b57e4
MD5 bfb801672e0d9916407352f7158b5584
BLAKE2b-256 4ffffd0ad53308bc3c2a83c0567f865a9662834a5d3247470248105a45240cc7

See more details on using hashes here.

File details

Details for the file numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.6

File hashes

Hashes for numpy-1.19.4-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9b30d4bd69498fc0c3fe9db5f62fffbb06b8eb9321f92cc970f2969be5e3949
MD5 09b6f7f17ca61f0f3b943d4107ea6a6c
BLAKE2b-256 0321f72ec478fba7db3a4ab7a57867115a7275e48015adacb33caae2dad96f63

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page