Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.20.0.zip (8.0 MB view details)

Uploaded Source

Built Distributions

numpy-1.20.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (14.7 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.20.0-cp39-cp39-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.20.0-cp39-cp39-win32.whl (11.4 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.20.0-cp39-cp39-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.9

numpy-1.20.0-cp39-cp39-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.20.0-cp39-cp39-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.20.0-cp39-cp39-macosx_10_9_x86_64.whl (16.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.20.0-cp38-cp38-win_amd64.whl (13.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.20.0-cp38-cp38-win32.whl (11.4 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.20.0-cp38-cp38-manylinux2014_aarch64.whl (12.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.0-cp38-cp38-manylinux2010_x86_64.whl (15.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.20.0-cp38-cp38-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.20.0-cp38-cp38-manylinux1_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.8

numpy-1.20.0-cp38-cp38-manylinux1_i686.whl (12.0 MB view details)

Uploaded CPython 3.8

numpy-1.20.0-cp38-cp38-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.20.0-cp37-cp37m-win_amd64.whl (13.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.20.0-cp37-cp37m-win32.whl (11.3 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.20.0-cp37-cp37m-manylinux2014_aarch64.whl (12.6 MB view details)

Uploaded CPython 3.7m

numpy-1.20.0-cp37-cp37m-manylinux2010_x86_64.whl (15.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.20.0-cp37-cp37m-manylinux2010_i686.whl (13.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.20.0-cp37-cp37m-manylinux1_x86_64.whl (13.7 MB view details)

Uploaded CPython 3.7m

numpy-1.20.0-cp37-cp37m-manylinux1_i686.whl (12.1 MB view details)

Uploaded CPython 3.7m

numpy-1.20.0-cp37-cp37m-macosx_10_9_x86_64.whl (16.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.20.0.zip.

File metadata

  • Download URL: numpy-1.20.0.zip
  • Upload date:
  • Size: 8.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0.zip
Algorithm Hash digest
SHA256 3d8233c03f116d068d5365fed4477f2947c7229582dad81e5953088989294cec
MD5 024eb99dba56c3021458caf86f2fea0a
BLAKE2b-256 c397fd507e48f8c7cab73a9f002e52e15983b5636b4ac6cf69b83ae240324b44

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4d592264d2a4f368afbb4288b5ceb646d4cbaf559c0249c096fbb0a149806b90
MD5 66ea4e7911de7fdce688c1b69f9c7c54
BLAKE2b-256 675b54d14318e8bd1fe1e1b2be498e7aaa883766b7d8d5d5c98371a2447748de

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e3db646af9f6a145f0c57202f4b55d4a33f975e395e78fb7b394644c17c1a3a6
MD5 663428d8bedc5785041800ce098368cd
BLAKE2b-256 ccbd5779abe299afb562cdd434e8229a69a71802cc131ea6d811a8bf05937745

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d1bc331e1706fd1809a1bc8a31205329e5b30cf5ba50461c624da267e99f6ae6
MD5 796b273028c7724a855214ae9a83e4f8
BLAKE2b-256 fc9d3845dab2da70d54f29973bc071117bd5b05b818621b5ebc384c4c3f2a1aa

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d28a54afcf46f1f9ebd163e49ad6b49087f22986fefd01a23ca0c1cdda25ca6
MD5 52a78d15f15959003047ccb6b66a0ee7
BLAKE2b-256 e1ce3f26bb881ed3b6540923cb162e4ea2ba66ffd4cadc994c660ecb219ee520

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 93c2abea7bb69f47029b84ceac30ab46dfcfdb99b671ad850a333ff794a765e4
MD5 4979a98a2cf0a1b14a82630b717aa12b
BLAKE2b-256 5f7ce27404f1650923650c418a961d9ccb22134926c88d61a09c3fdfe576bf82

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 cf5d9dcbdbe523fa665c5309cce5f144648d94a7fddbf5a40f8e0d5c9f5b596d
MD5 e36e7e259bb38ccd2320f88a137115e0
BLAKE2b-256 ef48de374754b58c6ac4b167537f3aabf3c1ba366d51ebce9c6f0d9e7cb3a58b

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cb257bb0c0a3176c32782a63cfab2eace7eabfa2a3b2dfd85a13700617ccaf28
MD5 749cca75b33849a78e7238aeb09baded
BLAKE2b-256 1865b7bc93a0096349f827ecb56f7b98370e704c8a1883c552505d8cf478f741

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f1e9424e9aa3834ea27cc12f9c6ea8ace5da18ee60a720bb3a85b2f733f41782
MD5 93ebb884970cf7292778cb19e9f27596
BLAKE2b-256 46488b2e5104bfb68e2b8723fbfb402ed0816066e5249735d6591c74b9849fc7

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 abdfa075e293d73638ece434708aa60b510dc6e70d805f57f481a0f550b25a9e
MD5 0e0e4bf53dd8ea4e232083e788419f30
BLAKE2b-256 e5e94ec4b349afdcb629943a1bbba22847222cdf3d9ad16670793d6ec92744c7

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eee454d3aa3955d0c0069a0f265fea47f1e1384c35a110a95efed358eb6e1562
MD5 2282da14106cb52bbf9c8c0b847c3480
BLAKE2b-256 3de356781e03ba3f7eb713af03ad8050957d357fd31685b356c446626436ff3e

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.4 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b66a6c15d793eda7cdad986e737775aa31b9306d588c14dd0277d2dda5546150
MD5 c192aeac728a3abfbd16daef87b2a307
BLAKE2b-256 cae58abad0d947199a7c66995c710fa8c9fb1de0af6239575f9129d75fa4e9ed

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 894aaee60043a98b03f0ad992c810f62e3a15f98a701e1c0f58a4f4a0df13429
MD5 0b0a5e36d4b75a00603cec4db09c44d7
BLAKE2b-256 c24bc80ff84027fd077bad534b75169c388f63bb45f6b70f0bf375c8c7c811e6

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33edfc0eb229f86f539493917b34035054313a11afbed48404aaf9f86bf4b0f6
MD5 83d74204a26e9dd3cb93653818745d09
BLAKE2b-256 4d0b309da6fbfa351de3b72817ecf3b663ca2962d15e60f00b14e6ad3e08bce9

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 12.0 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2445a96fbae23a4109c61be0f0af0f3bc273905dc5687a710850c1dfde0fc994
MD5 2ee146bad9aa521d0bdfd7e30e982a80
BLAKE2b-256 c1eeb000ac19ea14bdc876d9c697ea5e3f290a80edc1218ec43d27444fd172c1

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2bf0e68c92ef077fe766e53f8937d8ac341bdbca68ec128ae049b7d5c34e3206
MD5 791cc5086a755929a1140018067c4587
BLAKE2b-256 e94fe1ba93fd1d9b72d3b89e2091df522f52edc3a7a8449e3603114f5a5ea19c

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 13.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 afeee581b50df20ef07b736e62ca612858f1fcdba96651d26ab44e3d567a4e6e
MD5 ec8265d429e808d8f92ed46711d66bc7
BLAKE2b-256 4c0e7220e8ed03c55a1c1c2d68bd45fa28c04787477740ad64a918d25f6d0eb9

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.3 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b51b9ef0624f4b01b846c981034c10d2e30db33f9f8be71e992f3900741f6f77
MD5 e884b218dc2b20895f57fae00534e8ea
BLAKE2b-256 8823dc73a55f3887fe65afb11709e41888f2dd58b6c175ce2b8aee32fcc77eb4

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 12.6 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5ae765dd29c71a555f8102281f6fb15a3f4dbd35f6e7daf36af9df6d9dd716a5
MD5 b2d47be4aa123623b39f18723e0d70b7
BLAKE2b-256 5f5f530f553c7c12fca5a05b389d21251b859e70421a9d667158e96142a11eb0

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 15.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1abc02e30e3efd81a4571e00f8e62bf42e343c76698e0a3e11d9c2b3ee0d77a7
MD5 82211490e9375bdad57592139b49184d
BLAKE2b-256 3a6c322f6aa128179d0ea45a543a4e29a74da2317117109899cfd56d09bf3de0

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 13.3 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 db5e69d08756a2fa75a42b4e433880b6187768fe1bc73d21819def893e5128c6
MD5 89c477a3eaf2e3379aa21bf80e2a2812
BLAKE2b-256 58bae7f7b5672e6feb6346ac30f05e5429c3de47f473bc73462d3d5e82f4d1f3

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e9c5fd330d2fedf06051bafb996252de9b032fcb2ec03eefc9a543e56efa66d4
MD5 e8f71fdb7e4e837ae79894b621e3ca08
BLAKE2b-256 730d20355061d7c382c973d9c62803c6f1bdb2e2eb9e5f3623dff2f94c0e253c

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 12.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1264c66129f5ef63187649dd43f1ca59532e8c098723643336a85131c0dcce3f
MD5 c77f563595ab4bab6185c795c573a26a
BLAKE2b-256 732f39288b4a2490779e32c7c8bb0e3f1cde9d5875d15da9c20aa042e158a24b

See more details on using hashes here.

File details

Details for the file numpy-1.20.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.20.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/49.1.3 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.9.1

File hashes

Hashes for numpy-1.20.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89bd70c9ad540febe6c28451ba225eb4e49d27f64728357f512c808002325dfa
MD5 6f43f51475706d8346cee9604ed54e8a
BLAKE2b-256 efd68f0458d22383a63d953ddfd41444f4c21783d75b0d19e1373d4ab7456add

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page