Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.21.6.zip (10.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.2 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

numpy-1.21.6-cp310-cp310-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.21.6-cp310-cp310-win32.whl (11.7 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (15.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.6-cp39-cp39-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.21.6-cp39-cp39-win32.whl (11.7 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl (12.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl (17.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl (27.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.6-cp38-cp38-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.21.6-cp38-cp38-win32.whl (11.7 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl (12.3 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl (27.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.21.6-cp37-cp37m-win_amd64.whl (14.0 MB view details)

Uploaded CPython 3.7m Windows x86-64

numpy-1.21.6-cp37-cp37m-win32.whl (11.7 MB view details)

Uploaded CPython 3.7m Windows x86

numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (15.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl (13.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl (16.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file numpy-1.21.6.zip.

File metadata

  • Download URL: numpy-1.21.6.zip
  • Upload date:
  • Size: 10.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6.zip
Algorithm Hash digest
SHA256 ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656
MD5 04aea95dcb1d256d13a45df42173aa1e
BLAKE2b-256 45b7de7b8e67f2232c26af57c205aaad29fe17754f793404f59c8a730c7a191a

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0
MD5 9682abbcc38cccb7f56e48aacca7de23
BLAKE2b-256 2e5a6f3e280a10de48395053a559bfcb3b2221b74b57d062c1d6307fc965f549

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f
MD5 32a73a348864700a3fa510d2fc4350b7
BLAKE2b-256 ec0393702ca9c4bd61791e46c80ff1f24943febb2317484cf7e8207688bbbd95

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.21.6-cp310-cp310-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c
MD5 6f9a782477380b2cdb7606f6f7634c00
BLAKE2b-256 b077ff8bbe56ff6cbbdbdb8a641c67cee61e29b2e8bfbb18732c2e1d2961fe4d

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1
MD5 a9e25375a72725c5d74442eda53af405
BLAKE2b-256 6f7b036000a55680e6c7eb81502b0aa27ce0ed65d4d8805613909967d9f8baf6

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb
MD5 5a7a6dfdd43069f9b29d3fe6b7f3a2ce
BLAKE2b-256 57bad8cbdfd507b541bb247beff24d9d7304ac8ffc379cf585701187d45d4512

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6
MD5 171313893c26529404d09fadb3537ed3
BLAKE2b-256 26e74a6f579af8186372b03e8480e47df309520d91cfead8759b64dd5ac62688

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e
MD5 d981d2859842e7b62dc93e24808c7bac
BLAKE2b-256 4a72a3379f83172f1431d7949138373e3a24beed68184c9362dab1b4d465be26

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25
MD5 5a3e5d7298056bcfbc3246597af474d4
BLAKE2b-256 ffc605ae3c7f75b596e1bb3d78131c331eada9376a03d1af9801bd40e4675023

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3
MD5 f0d20eda8c78f957ea70c5527954303e
BLAKE2b-256 4d04bcd62448f2e772bc90a73ba21bacaa19817ae9905ae639969462862bd071

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786
MD5 a2405b0e5d3f775ad30177296a997092
BLAKE2b-256 1bb57178d5a22427a9195ac69d6ec150415734f7a7a19d1142f82b89ead1dac4

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b
MD5 aa5e9baf1dec16b15e481c23f8a23214
BLAKE2b-256 767f830cf169eede1b855538f962e3a70c31755db6423652695b813ed04ff54e

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b
MD5 bd0c9e3c0e488faac61daf3227fb95af
BLAKE2b-256 e7f20bdcf2c40ef144cbbc9e0947eea831a145a98b0e5f8438fc09cf7fda0b35

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac
MD5 50e79cd0610b4ed726b3bf08c3716dab
BLAKE2b-256 61f4f01a8989e53a437ad660ab86c91514bec3d5067393e4a844b259f5a103de

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.4 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0
MD5 128c3713b5d1de45a0f522562bac5263
BLAKE2b-256 4456041e886b4a8da813b7ec297c270fb3582d2ae8b7f33e106eb5c7a5e9184c

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673
MD5 67488d8ccaeff798f2e314aae7c4c3d6
BLAKE2b-256 4c6207402945bd5d5cf515a5f0cbc7263abf02ec0ddf3b19fbdc4af7537cd4d0

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.2 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1
MD5 61c4caad729e3e0e688accbc1424ed45
BLAKE2b-256 83eba6a0d7fc8e718776c5c710692ea027607104710cba813c4b869182179334

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf
MD5 e1063e01fb44ea7a49adea0c33548217
BLAKE2b-256 485fdb4550e1c68206814a577ebd92c0dd082f3628fd7fc96725d44a521b0c92

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470
MD5 f7234e2ef837f5f6ddbde8db246fd05b
BLAKE2b-256 6f47453023bd298f8b0be092d8a8bdd4b21f87a8c639ecb724a94cd75e23d216

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4
MD5 88509abab303c076dfb26f00e455180d
BLAKE2b-256 86c73f68d0a8dcc9458879c614707e6ffaf64a108664cfbba9702d3ba7ca4c82

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a
MD5 486cf9d4daab59aad253aa5b84a5aa83
BLAKE2b-256 d543e88bb1fb7d040ae8e0e06e749341b13f57701aab11fe9d71c99af6202c5c

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6
MD5 fa8011e065f1964d3eb870bb3926fc99
BLAKE2b-256 6a52a1dcf14b8e81d49c14112663290ee2ed545bd04988170138284a613bd926

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.3 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3
MD5 5f0e773745cb817313232ac1bf4c7eee
BLAKE2b-256 0d21036363516c06737135ee58741e9c0af4899348ce3c5f5e04379240edd090

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab
MD5 3c67d14ea2009069844b27bfbf74304d
BLAKE2b-256 5bd4be63d2bed7d10f443dee42469623326b6bc51c9e5cd096ebb7227bca456f

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.1 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552
MD5 0d08809980ab497659e7aa0df9ce120e
BLAKE2b-256 b5e2b2df1f664d644e690b40179fc0a07c163c6decf986c7adee8a85a094e8ce

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 14.0 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a
MD5 0062a7b0231a07cb5b9f3d7c495e6fe4
BLAKE2b-256 979fda37cc4a188a1d5d203d65ab28d6504e17594b5342e0c1dc5610ee6f4535

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: numpy-1.21.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 11.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e
MD5 689bf804c2cd16cb241fd943e3833ffd
BLAKE2b-256 cdebf6f3258e7b0e0cc5c327778312bf4ee4978c8514aa28e97119ee206f6e60

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db
MD5 e32dbd291032c7554a742f1bb9b2f7a3
BLAKE2b-256 b70d86662f93102e42545cdf031da4fddf0ace9030ec67478932a628afc5973b

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2
MD5 c70e30e1ff9ab49f898c19e7a6492ae6
BLAKE2b-256 6dadff3b21ebfe79a4d25b4a4f8e5cf9fd44a204adb6b33c09010f566f51027a

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

  • Download URL: numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
  • Upload date:
  • Size: 13.7 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46
MD5 67882155be9592850861f4ad8ba36623
BLAKE2b-256 0678b184f13f5461812a17a90b380d70a93fa3532460f0af9d72b0d93d8bc4ff

See more details on using hashes here.

File details

Details for the file numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.4

File hashes

Hashes for numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7
MD5 0db8941ebeb0a02cd839d9cd3c5c20bb
BLAKE2b-256 32dd43d8b2b2ebf424f6555271a4c9f5b50dc3cc0aafa66c72b4d36863f71358

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page