Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.22.0.zip (11.3 MB view details)

Uploaded Source

Built Distributions

numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.22.0-cp310-cp310-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl (27.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.22.0-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.22.0-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl (27.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

numpy-1.22.0-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.22.0-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl (27.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file numpy-1.22.0.zip.

File metadata

  • Download URL: numpy-1.22.0.zip
  • Upload date:
  • Size: 11.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0.zip
Algorithm Hash digest
SHA256 a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397
MD5 252de134862a27bd66705d29622edbfe
BLAKE2b-256 50e19b0c184f04b8cf5f3c941ffa56fbcbe936888bdac9aa7ba6bae405ac752b

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b
MD5 05d842127ca85cca12fed3a26b0f5177
BLAKE2b-256 eacab959d2a51d2e64b439ce1f4c9b212fc1be9f15c8ef0dce75da33a1b8ca43

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d
MD5 7a1a21bb0958a3eb920deeef9e745935
BLAKE2b-256 ba0fdccae97d723f67e77994acdc6f5408361e6ea291bdefe980b79bd4c4eed6

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f
MD5 6efef45bf63594703c094b2ad729e648
BLAKE2b-256 5b9acce6992d25096371412f1a58e5c50f144299261d01dfc4c00fd563a589e7

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559
MD5 6643e9a076cce736cfbe15face4db9db
BLAKE2b-256 95e9e5eb2f787be2f5b2abd515b0619b60b920d0dba85ab9ffddea8933fd46e4

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226
MD5 5184db17d8e5e6ecdc53e2f0a6964c35
BLAKE2b-256 0bd898f051eb7b4c7b8837be3f062a2decb1e99467296603128211851f20c3b5

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f
MD5 86b7f3a94c09dbd6869614c4d7f9ba5e
BLAKE2b-256 4fa0068107e64c4eab46556501c45a4f8ffb5fa6d52cd1560501615edbb7de68

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.8 MB
  • Tags: CPython 3.10, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695
MD5 66757b963ad5835038b9a2a9df852c84
BLAKE2b-256 053e1096faf035cb588bc47c186e0fb1313c68157748d701cac45a7f940670e5

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c
MD5 1b5c670328146975b21b54fa5ef8ec4c
BLAKE2b-256 d2685dee75d9aa93da93aff0bc87a3fd9802efa86ee1d05d4e326ca74c8b6876

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.22.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88
MD5 6425f8d7dc779a54b8074e198cea43c9
BLAKE2b-256 ce1591b487bd26faae172918497873f18a30c47b33e226b13c672f2163b42089

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd
MD5 89d455bf290f459a70c57620f02d5b69
BLAKE2b-256 ec346cf4173a662098da4a71dc219f0facf60cb71202d391c7fe29e92cb519e3

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9
MD5 6e519dd5205510dfebcadc6f7fdf9738
BLAKE2b-256 6f80ad691c856af8d0723d1060824a76a14f8dd536b607685c4199bd301887c7

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f
MD5 3780decd94837da6f0816f2feaace9c2
BLAKE2b-256 18e7044b6de4dda08312d3a6ad6d60f57043961d872e0e8e3035e3e9df23cad6

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.7 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595
MD5 4554a5797a4cb787b5169a8f5482fb95
BLAKE2b-256 ec3d7e9b4d9feab871ecdfefeb9290102ba8b7c9b6ec164f6c6b7cf7638ea4ab

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.8 MB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1
MD5 2cb27112b11c16f700e6019f5fd36408
BLAKE2b-256 3e4ea18f88159322c2dcfed1e1e72dcc6be7e50f86a65c5b814440969aca7c7a

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f
MD5 f4b45579cf532ea632b890b1df387081
BLAKE2b-256 52b4775fed9035c738fefb005048a089441dd861762b6213164f0a39de087462

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.22.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5
MD5 0f31a7b9e128b0cdafecf98cf1301fc0
BLAKE2b-256 6e624953cafa92c330f865676db91a142898ab8c3a52ef111ffdf4b35314be98

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c
MD5 9ae6ecde0cbeadd2a9d7b8ae54285863
BLAKE2b-256 769b139b42e808e44571412e2b70f970085dc6bd215a46814f91503a75ff5be5

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383
MD5 313f0fd99a899a7465511c1418e1031f
BLAKE2b-256 24dd65fba9cb7d350b9594740a1d6ba39888b8c8ecb47dd6d3aec83e5844cb64

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982
MD5 6c15cf7847b20101ae281ade6121b79e
BLAKE2b-256 32231a3f0a626188e48b39f80b5d494f80893f841b6776fde7d0911cdec10a51

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471
MD5 472f24a5d35116634fcc57e9bda899bc
BLAKE2b-256 96d55e725e144de1043e546af2bee9de7da6ccd2d3b5eb96cbc538a86a69f8f5

See more details on using hashes here.

File details

Details for the file numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

  • Download URL: numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 27.7 MB
  • Tags: CPython 3.8, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.1

File hashes

Hashes for numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9
MD5 45241fb5f31ea46e2b6f1321a63c8e1c
BLAKE2b-256 72456749d5851b31f66db379760b6d9053d2d99f72ba19fa114c9b893c4704ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page