Skip to main content

NumPy is the fundamental package for array computing with Python.

Project description

It provides:

  • a powerful N-dimensional array object

  • sophisticated (broadcasting) functions

  • tools for integrating C/C++ and Fortran code

  • useful linear algebra, Fourier transform, and random number capabilities

  • and much more

Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

All NumPy wheels distributed on PyPI are BSD licensed.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.22.2.zip (11.4 MB view details)

Uploaded Source

Built Distributions

numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.22.2-cp310-cp310-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

numpy-1.22.2-cp39-cp39-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.22.2-cp39-cp39-win32.whl (12.2 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl (12.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

numpy-1.22.2-cp38-cp38-win_amd64.whl (14.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

numpy-1.22.2-cp38-cp38-win32.whl (12.2 MB view details)

Uploaded CPython 3.8 Windows x86

numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl (12.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file numpy-1.22.2.zip.

File metadata

  • Download URL: numpy-1.22.2.zip
  • Upload date:
  • Size: 11.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2.zip
Algorithm Hash digest
SHA256 076aee5a3763d41da6bef9565fdf3cb987606f567cd8b104aded2b38b7b47abf
MD5 a903008d992b77cb68129173c0f61f60
BLAKE2b-256 e96cc0a8130fe198f27bab92f1b28631e0cc2572295f6b7a31e87efe7448aa1c

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4a176959b6e7e00b5a0d6f549a479f869829bfd8150282c590deee6d099bbb6e
MD5 4dbecace42595742485b854b213341b6
BLAKE2b-256 427dac9ed40bfac67f024caaa022a252dd3bd4e15c1d67f8c5bf61bbd33da3ad

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aafa46b5a39a27aca566198d3312fb3bde95ce9677085efd02c86f7ef6be4ec7
MD5 ee012ed5e7c98c6f48026dfa818b2274
BLAKE2b-256 423456b7ac9c9c34bb80c9eb78a3ebb06b216effb37960daa5dab2f31be41fc7

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3556c5550de40027d3121ebbb170f61bbe19eb639c7ad0c7b482cd9b560cd23b
MD5 744da9614e8272a384b542d129cd17a9
BLAKE2b-256 3be143f57afb6743f69cc671d05767d3e7db90ba3309d80412d58b727c7b61e7

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 168259b1b184aa83a514f307352c25c56af111c269ffc109d9704e81f72e764b
MD5 84b36e8893b811d17a19404c68db7ce6
BLAKE2b-256 4f6110e066e982dd43ac2c7452b0800fa0eb5819082c6efbe0d52afc77b3691c

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.10, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76a4f9bce0278becc2da7da3b8ef854bed41a991f4226911a24a9711baad672c
MD5 023c01a6d3aa528f8e88b0837dcab7ed
BLAKE2b-256 300793792564f8d66ca55ddc7de15c5317ce7e19797a2b9395570b588e932592

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.10, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 515a8b6edbb904594685da6e176ac9fbea8f73a5ebae947281de6613e27f1956
MD5 2319f8d7c629d0ba3d3d3b1d5605d494
BLAKE2b-256 9f435ca28bcd4b5e0b09ae464ae7c53310068fb302eaaab5f533a02c5cb3d769

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59153979d60f5bfe9e4c00e401e24dfe0469ef8da6d68247439d3278f30a180f
MD5 54432a84807ab69ac3432e6090d5a169
BLAKE2b-256 4b23140ec5a509d992fe39db17200e96c00fd29603c1531ce633ef93dbad5e9e

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.22.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 8cf33634b60c9cef346663a222d9841d3bbbc0a2f00221d6bcfd0d993d5543f6
MD5 2686a1495c620e85842967bf8a5f1b2f
BLAKE2b-256 f0d71a7a283498572bc721d9cba21ec67d4a0b9876f0df8e1f7ef9d58c0e0cc7

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94dd11d9f13ea1be17bac39c1942f527cbf7065f94953cf62dfe805653da2f8f
MD5 7606b9898c20d2b2aa7fc7018bc9c5cd
BLAKE2b-256 fb65d5d8303c7dd6a46964cc360e6d95137821493bbd7e4644165afdac13149e

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 badca914580eb46385e7f7e4e426fea6de0a37b9e06bec252e481ae7ec287082
MD5 59e3013894bcc6267054c746d9339cf8
BLAKE2b-256 9d0be63a3a9535b1f3d59239acabcaa5e725999f2dce8ab7c5faccf2d29f0d31

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.8 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15efb7b93806d438e3bc590ca8ef2f953b0ce4f86f337ef4559d31ec6cf9d7dd
MD5 e25666ab6ec0692368f328b7b98c27a3
BLAKE2b-256 dac09763f5308b549dba3cf46c4f919cbe6e2704e22a2471c6347722bb6fb202

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d76a26c5118c4d96e264acc9e3242d72e1a2b92e739807b3b69d8d47684b6677
MD5 1449889d856de0e88437fa76d3284e00
BLAKE2b-256 9a5b99d2a7aaedd78dd785186bd2e6deaa85b0cbb50e563bbefa8fb6701f756c

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 14.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 03ae5850619abb34a879d5f2d4bb4dcd025d6d8fb72f5e461dae84edccfe129f
MD5 05d3b6d34c0fa031e69ec0476e8d4c9c
BLAKE2b-256 305fcc8acf4b650e6ea11afd3d7b35506496103cb417c39a7f9b890ce9ce315c

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: numpy-1.22.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 12.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 6767ad399e9327bfdbaa40871be4254d1995f4a3ca3806127f10cec778bd9896
MD5 05906141c095148c53c043c381e6fabe
BLAKE2b-256 08fd38ed81dbccabce656c53edaaceb852730fe61c68fdab6d8130adda4f0e5e

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2638389562bda1635b564490d76713695ff497242a83d9b684d27bb4a6cc9d7a
MD5 dc8d79d75588737ea77fe85a4f05365a
BLAKE2b-256 d087f0087b58ac4f8e9b92bf8035eab033076afdf435cbb20faf118db1905e91

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.22.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b536b6840e84c1c6a410f3a5aa727821e6108f3454d81a5cd5900999ef04f89
MD5 b7e0d4a19867d33765c7187d1390eef4
BLAKE2b-256 eec9ccceb8c6f8cb43c759e6e1822d50af08a98ea495b23dba35cea82b6deed7

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 12.7 MB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60cb8e5933193a3cc2912ee29ca331e9c15b2da034f76159b7abc520b3d1233a
MD5 9fcbca2a614af3b9a37456643ab1c99d
BLAKE2b-256 311ca2790a090b08b42d8b78e114d6867d63783dccbb0c2902404adabeb7b231

See more details on using hashes here.

File details

Details for the file numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 17.6 MB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.27.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.2

File hashes

Hashes for numpy-1.22.2-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 55535c7c2f61e2b2fc817c5cbe1af7cb907c7f011e46ae0a52caa4be1f19afe2
MD5 73e4fdcf398327bc4241dc38b6d10211
BLAKE2b-256 25857bb7c2bb23818db17cd4dbff1d4bbac6a19275d98950f1fc4de5a824fff7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page