NumPy is the fundamental package for array computing with Python.
Project description
It provides:
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
and much more
Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.
All NumPy wheels distributed on PyPI are BSD licensed.
NumPy requires pytest and hypothesis. Tests can then be run after installation with:
python -c 'import numpy; numpy.test()'
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for numpy-1.23.2-pp38-pypy38_pp73-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | be6b350dfbc7f708d9d853663772a9310783ea58f6035eec649fb9c4371b5389 |
|
MD5 | 3a6f1e1256ee9be10d8cdf6be578fe52 |
|
BLAKE2b-256 | a5ed803b31039f613058b1359d48ca3a6be8116d7a49c644ab5958d0c059caf2 |
Hashes for numpy-1.23.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bd879d3ca4b6f39b7770829f73278b7c5e248c91d538aab1e506c628353e47f |
|
MD5 | 4ab13c35056f67981d03f9ceec41db42 |
|
BLAKE2b-256 | 1f9f6c5e5076834e009c9a5fd009a8b8dedeb56976b64b71a53b718c916b43a3 |
Hashes for numpy-1.23.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 806970e69106556d1dd200e26647e9bee5e2b3f1814f9da104a943e8d548ca38 |
|
MD5 | 355a231dbd87a0f2125cc23eb8f97075 |
|
BLAKE2b-256 | f620001995044e785ee7b806785dcbf052c62bfd28f3b4bc1562b3d612754828 |
Hashes for numpy-1.23.2-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ecb818231afe5f0f568c81f12ce50f2b828ff2b27487520d85eb44c71313b9e |
|
MD5 | ead32e141857c5ef33b1a6cd88aefc0f |
|
BLAKE2b-256 | f5853b622959cc922874aee72fc5c9db87c3e3779c7404d0370faab80450a3f3 |
Hashes for numpy-1.23.2-cp311-cp311-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d98addfd3c8728ee8b2c49126f3c44c703e2b005d4a95998e2167af176a9e722 |
|
MD5 | a54b136daa2fbb483909f08eecbfa3c5 |
|
BLAKE2b-256 | 49c9fa9cbbf6f9a1d870bf8e89d462dc46831728d02e6bcee477ed5bda6fced5 |
Hashes for numpy-1.23.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac987b35df8c2a2eab495ee206658117e9ce867acf3ccb376a19e83070e69418 |
|
MD5 | 9b8389f528fe113247954248f0b78ce1 |
|
BLAKE2b-256 | 274b4ee1067b542fbff6acc64ca937e7920f40706921ed5e3ea53f46a1d15670 |
Hashes for numpy-1.23.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5593f67e66dea4e237f5af998d31a43e447786b2154ba1ad833676c788f37cde |
|
MD5 | ec23c73caf581867d5ca9255b802f144 |
|
BLAKE2b-256 | 962b4c7c7b171e4112c65c88780ae9834e3bbcd44d443cc422b3422d0de1b0e4 |
Hashes for numpy-1.23.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ecfdd68d334a6b97472ed032b5b37a30d8217c097acfff15e8452c710e775524 |
|
MD5 | e3004aae46cec9e234f78eaf473272e0 |
|
BLAKE2b-256 | 108e843caee5e70d9edb8b01dc9418edbf475200abde5299136683006ed2d58b |
Hashes for numpy-1.23.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc76bca1ca98f4b122114435f83f1fcf3c0fe48e4e6f660e07996abf2f53903c |
|
MD5 | 8ecdb7e2a87255878b748550d91cfbe0 |
|
BLAKE2b-256 | 185107c1c49cbf334b54f3f7a73c5a84a8244049bdf716b06611ff9de435620e |
Hashes for numpy-1.23.2-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ebf7e194b89bc66b78475bd3624d92980fca4e5bb86dda08d677d786fefc414 |
|
MD5 | 01e508b8b4f591daff128da1cfde8e1f |
|
BLAKE2b-256 | 15b1166dc9111024caedff5f9bcce8f115ac532e0b117eddbb4cc545c42228e9 |
Hashes for numpy-1.23.2-cp310-cp310-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | df28dda02c9328e122661f399f7655cdcbcf22ea42daa3650a26bce08a187450 |
|
MD5 | 0caad53d9a5e3c5e8cd29f19a9f0c014 |
|
BLAKE2b-256 | d55729aa1125ebfa31c62386356a77ac68693c7bf32fb7d8d5deb97c875eeb4b |
Hashes for numpy-1.23.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bdc02c0235b261925102b1bd586579b7158e9d0d07ecb61148a1799214a4afd5 |
|
MD5 | 4ed412c4c078e96edf11ca3b11eef76b |
|
BLAKE2b-256 | 7f9943b8e647339c633c0648a6b29a8989971effb1ec03dd6994a1e23c6d3c08 |
Hashes for numpy-1.23.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17e5226674f6ea79e14e3b91bfbc153fdf3ac13f5cc54ee7bc8fdbe820a32da0 |
|
MD5 | df059e5405bfe75c0ac77b01abbdb237 |
|
BLAKE2b-256 | 15aaf831165eefc6e0f10082db7b314871490f30791f9e6a2ddc404828c77e67 |
Hashes for numpy-1.23.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 633679a472934b1c20a12ed0c9a6c9eb167fbb4cb89031939bfd03dd9dbc62b8 |
|
MD5 | 0ab14b1afd0a55a374ca69b3b39cab3c |
|
BLAKE2b-256 | bdf325f99b1312a072b729249293528a38327debf2b8e93aa84b59832e2c1a1f |
Hashes for numpy-1.23.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e603ca1fb47b913942f3e660a15e55a9ebca906857edfea476ae5f0fe9b457d5 |
|
MD5 | fe1e3480ea8c417c8f7b05f543c1448d |
|
BLAKE2b-256 | 7ac338e826f1c0697e7c5f50ebcfc15672b53d5204c629f2203f4c018d6f39b0 |
Hashes for numpy-1.23.2-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5e28cd64624dc2354a349152599e55308eb6ca95a13ce6a7d5679ebff2962913 |
|
MD5 | d7af57dd070ccb165f3893412eb602e3 |
|
BLAKE2b-256 | 94a8f49341e9b3d766be1aaaeeb0f3b5ea783c03fe858b825e30259e6fa63ecd |
Hashes for numpy-1.23.2-cp39-cp39-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf8c6aed12a935abf2e290860af8e77b26a042eb7f2582ff83dc7ed5f963340c |
|
MD5 | 2b7c79cae66023f8e716150223201981 |
|
BLAKE2b-256 | 3634592e7862766847bb103e17518a149f7da83c3b223c7b8933bc26bbaf078b |
Hashes for numpy-1.23.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c403c81bb8ffb1c993d0165a11493fd4bf1353d258f6997b3ee288b0a48fce77 |
|
MD5 | 8ee105f4574d61a2d494418b55f63fcb |
|
BLAKE2b-256 | f8eaff38168d6565a8549f819699cac4d89bbc38fc5b27fb94f8e92bcd713348 |
Hashes for numpy-1.23.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f9d84a24889ebb4c641a9b99e54adb8cab50972f0166a3abc14c3b93163f074 |
|
MD5 | 76262a8e5d7a4d945446467467300a10 |
|
BLAKE2b-256 | d0d2eb5aad7aae64618a128d0de3909058403cad0fd0391e0e21e302a8f7755c |
Hashes for numpy-1.23.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 806cc25d5c43e240db709875e947076b2826f47c2c340a5a2f36da5bb10c58d6 |
|
MD5 | 7f2ad7867c577eab925a31de76486765 |
|
BLAKE2b-256 | 14ef726b45ca7229d54d42f012b20e879b3566f794ce1ee3950ecc34f84f3821 |
Hashes for numpy-1.23.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f41f5bf20d9a521f8cab3a34557cd77b6f205ab2116651f12959714494268b0 |
|
MD5 | d156dfae94d33eeff7fb9c6e5187e049 |
|
BLAKE2b-256 | c9df489be4464354bfb64b0ccae199740c4d89ce8b2a32ae2365c48166fd551a |
Hashes for numpy-1.23.2-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dec198619b7dbd6db58603cd256e092bcadef22a796f778bf87f8592b468441d |
|
MD5 | b5c5a2f961402259e301c49b8b05de55 |
|
BLAKE2b-256 | faca5e0d36d65772b5ff586e94103cd9b2de216e544444651fc2681165c6d02c |
Hashes for numpy-1.23.2-cp38-cp38-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b83d48e464f393d46e8dd8171687394d39bc5abfe2978896b77dc2604e8635d |
|
MD5 | c246a78b09f8893d998d449dcab0fac3 |
|
BLAKE2b-256 | 8e09ddc6c59633bd34d716ac9bbefb945368bbcbb620fbcc3b45b1e4e6850651 |
Hashes for numpy-1.23.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd5b7ccae24e3d8501ee5563e82febc1771e73bd268eef82a1e8d2b4d556ae66 |
|
MD5 | c26ea699d94d7f1009c976c66cc4def3 |
|
BLAKE2b-256 | 2c5bba2f6d662dfc0c8c9927c05faf2e722a7a7f417ad4665800f819174b818f |
Hashes for numpy-1.23.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b8b97a8a87cadcd3f94659b4ef6ec056261fa1e1c3317f4193ac231d4df70215 |
|
MD5 | edeba58edb214390112810f7ead903a8 |
|
BLAKE2b-256 | 301c729be6462c939a75f6e484ced255ce6ef4dbba1354b56928123c588deb48 |
Hashes for numpy-1.23.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8247f01c4721479e482cc2f9f7d973f3f47810cbc8c65e38fd1bbd3141cc9842 |
|
MD5 | 04c986880bb24fac2f44face75eab914 |
|
BLAKE2b-256 | 9fdee59ba2debde8bd3ef09f48222ad008c7ec8f21d5aef154869f08bbf487b8 |
Hashes for numpy-1.23.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 909c56c4d4341ec8315291a105169d8aae732cfb4c250fbc375a1efb7a844f8f |
|
MD5 | df1f18e52d0a2840d101fdc9c2c6af84 |
|
BLAKE2b-256 | fc90fa2ca0f2fcabbfd970e1e78f820d8639683c36525e1c89d9bd20e69230a7 |