Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.26.1.tar.gz (15.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl (15.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.26.1-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-1.26.1-cp312-cp312-win32.whl (20.0 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl (17.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-1.26.1-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.26.1-cp311-cp311-win32.whl (20.8 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.26.1-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.26.1-cp310-cp310-win32.whl (20.8 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.26.1-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.26.1-cp39-cp39-win32.whl (20.8 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.26.1.tar.gz.

File metadata

  • Download URL: numpy-1.26.1.tar.gz
  • Upload date:
  • Size: 15.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1.tar.gz
Algorithm Hash digest
SHA256 c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe
MD5 2d770f4c281d405b690c4bcb3dbe99e2
BLAKE2b-256 7823f78fd8311e0f710fe1d065d50b92ce0057fe877b8ed7fd41b28ad6865bfc

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f
MD5 bbd0461a1e31017b05509e9971b3478e
BLAKE2b-256 be1328dad1f91605d519b6899f7a26ab61938ecbd9e1770e219e7030b15d58e4

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42
MD5 28aece4f1ceb92ec463aa353d4a91c8b
BLAKE2b-256 37ba2512f7b48e619259ee38d4f803fdc6ed92ec9f4975772378de1eef6e6a5c

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668
MD5 3af340d5487a6c045f00fe5eb889957c
BLAKE2b-256 0240c7b748b9d247f7d062ed6735d5f484a7e52fe13546318872a489cfb810bf

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7
MD5 a1832f46521335c1ee4c56dbf12e600b
BLAKE2b-256 3295908d0caa051beae4f7c77652dbbeb781e7b717f3040c5c5fcaed4d3ed08f

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-1.26.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66
MD5 d93338e7d60e1d294ca326450e99806b
BLAKE2b-256 656489efc3809fb6a733a6e10e7fe6498e404cabf57f063d232ded3d7cc4ef08

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c
MD5 1dce230368ae5fc47dd0fe8de8ff771d
BLAKE2b-256 f04b02caaf93a1afaebb12c053df360c3bec4b1818a39d24f4eca0efe1d7ab5f

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124
MD5 c44b56c96097f910bbec1420abcf3db5
BLAKE2b-256 07c0ccbb2a4c75b283d6100400a907087bfa4d89cee9df73fa6af85268115d81

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e
MD5 104d939e080f1baf0a56aed1de0e79e3
BLAKE2b-256 8270cd8a18c109a8ba45477e4bddcff6cdbb31b1694148eb152087a3c264a4ae

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24
MD5 fd62f65ae7798dbda9a3f7af7aa5c8db
BLAKE2b-256 655a87a862acf8aa3ef5896577db5baf29e56df0fdbda025fbb67fd5039794d1

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f
MD5 3aad6bc72db50e9cc88aa5813e8f35bd
BLAKE2b-256 ad00adb57a4974931c97a9bbbc92fd2cc998aa47569fcd7fb65ded4b81b72455

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53
MD5 4ef5e1bdd7726c19615843f5ac72e618
BLAKE2b-256 820f3f712cd84371636c5375d2dd70e7514d264cec6bdfc3d7997a4236e9f948

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.26.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b
MD5 339795930404988dbc664ff4cc72b399
BLAKE2b-256 799e73af202f778cae92d3789cc06e6f2be14102e9c8f9af9bbe2cc6c81b326f

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c
MD5 a8c89e13dc9a63712104e2fb06fb63a6
BLAKE2b-256 14c268bbc08cd8af52f52f7d978c97062eab1e627f5423d591ba67f732b5f265

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974
MD5 ebcb6cf7f64454215e29d8a89829c8e1
BLAKE2b-256 8a08a7e5dadc21fe193baea5f257e11b7b70cc27a89692fc9e3ed690e55cc4b6

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3
MD5 e86da9b6040ea88b3835c4d8f8578658
BLAKE2b-256 2d21ae3276d5f7c255a7c821d54d94c1270448b9a5936b618d7a8f5fb3c91c02

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9
MD5 682f9beebe8547f205d6cdc8ff96a984
BLAKE2b-256 e8060512e2582fd27bb7b358fa1e4ffc0f6c89c89f5ada31df58c5fa93171098

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a
MD5 ebdd5046937df50e9f54a6d38c5775dd
BLAKE2b-256 c59e2d6d9d8f0ec910539ee721f86f23489a0eedb25bd51f4268ae0899f6a3ab

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab
MD5 315c251d2f284af25761a37ce6dd4d10
BLAKE2b-256 5709fe9282ffb0217176b0185900945189b6beaec4f94ff46afb76bcd9b68e30

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.26.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297
MD5 3c40ef068f50d2ac2913c5b9fa1233fa
BLAKE2b-256 578f7df6e01a44742088aacc985da04bbc2019575fe684b7b9d9057f4f0e22e0

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2
MD5 eea626b8b930acb4b32302a9e95714f5
BLAKE2b-256 b8d958db30222fcfa35411d83150d313c5028680298ec8c69f85d0fcec4d4664

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67
MD5 9b22fa3d030807f0708007d9c0659f65
BLAKE2b-256 2d5ecb38e3d1916cc29880c84a9332a9122a8f49a7b57ec7aea63e0f678587a2

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244
MD5 9d25010a7bf50e624d2fed742790afbd
BLAKE2b-256 a2e0008311a728bd77084b207840bbeb1e5e3a8412994851ec06856413ca7a7a

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575
MD5 196d2e39047da64ab28e177760c95461
BLAKE2b-256 e363fd76159cb76c682171e3bf50ed0ee8704103035a9347684a2ec0914b84a1

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af
MD5 bda38de1a047dd9fdddae16c0d9fb358
BLAKE2b-256 3411055802bf85abbb61988e6313e8b0a85167ee0795fc2c6141ee5b539e7b11

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2
MD5 4589dcb7f754fade6ea3946416bee638
BLAKE2b-256 2ded022fc4106f6d97e41e156201274138e0369b27dbfc8c206034f24ebd97d9

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.26.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for numpy-1.26.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104
MD5 246a3103fdbe5d891d7a8aee28875a26
BLAKE2b-256 1d363593d482565bdb3d6a016565c56edaa18fac20f71bb18741ee030140a793

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5
MD5 9179fc57c03260374c86e18867c24463
BLAKE2b-256 20ee8fac67ed6c74a246e3634f2e7d709f54478b09d0f5dd97361ad6b03eb5a8

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908
MD5 0229ba8145d4f58500873b540a55d60e
BLAKE2b-256 89ac53100546dcd9aa400a73c7770b13cad9a3b18bf83433499e36b5efe9850f

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e
MD5 0a9d80d8b646abf4ffe51fff3e075d10
BLAKE2b-256 9b07f1d5e7a4840c96f7d44be31c39d1f8025fca32cdebf2bce36511a4a64e82

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617
MD5 78c2ab13d395d67d90bcd6583a6f61a8
BLAKE2b-256 8654fafc9282d2510aa56694897029a96e524c72dfe9a1148294fe8f2bcbe974

See more details on using hashes here.

File details

Details for the file numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e
MD5 946fbb0b6caca9258985495532d3f9ab
BLAKE2b-256 d297ef9a9cfabbf97092475dda30179bcd86b261e678d8968003f7e8effc4fdd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page