Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.26.2.tar.gz (15.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl (15.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.4 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.26.2-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-1.26.2-cp312-cp312-win32.whl (20.0 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-1.26.2-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.26.2-cp311-cp311-win32.whl (20.8 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.26.2-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.26.2-cp310-cp310-win32.whl (20.8 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.26.2-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.26.2-cp39-cp39-win32.whl (20.8 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.26.2.tar.gz.

File metadata

  • Download URL: numpy-1.26.2.tar.gz
  • Upload date:
  • Size: 15.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2.tar.gz
Algorithm Hash digest
SHA256 f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea
MD5 8f6446a32e47953a03f8fe8533e21e98
BLAKE2b-256 dd2b205ddff2314d4eea852e31d53b8e55eb3f32b292efc3dd86bd827ab9019d

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841
MD5 010aeb2a50af0af1f7ef56f76f8cf463
BLAKE2b-256 62b2b11cde3447d5e6dfbfe0713ecd10760945584632969a15ce2177d37df982

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d
MD5 6bd88e0f33933445d0e18c1a850f60e0
BLAKE2b-256 878c1c5a2bbfb55e4ff35f9c30933e8816b188de3cc3e2eaf9304906991984a9

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79
MD5 aed2d2914be293f60fedda360b64abf8
BLAKE2b-256 fb9117cea405f20865b0dce6f99dde5446b138e92111e140cde14933d433d69a

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e
MD5 fe38cd95bbee405ce0cf51c8753a2676
BLAKE2b-256 28753b679b41713bb60e2e8f6e2f87be72c971c9e718b1c17b8f8749240ddca8

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-1.26.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167
MD5 57944ba30adc07f33e83a9b45f5c625a
BLAKE2b-256 517d6181c8778cdb15ba0a4959bb72dcc1854c89ca4824481f224c6faf7024e1

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec
MD5 b2504d4239419f012c08fa1eab12f940
BLAKE2b-256 8c9f2f5c6b5f63cf006e6190bf750ade791d1fee353bab654bbde2f83a3ab92e

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6
MD5 d91f5b2bb2c931e41ae7c80ec7509a31
BLAKE2b-256 0251f078f1e7f658022150e7c8d5f99d505b40812840349d54667f98bb915b26

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6
MD5 28d3b1943d3a8ad4bbb2ae9da0a77cb9
BLAKE2b-256 04893b831e2b50c9364069609d1335f46c488a149d5f2be14a08741c92a60009

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7
MD5 7526faaea58c76aed395c7128dd6e14d
BLAKE2b-256 a142a2819c5b77fe6506662ffc13b767e0c216c02f75ae840219013ab822a473

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75
MD5 302ff6cc047a408cdf21981bd7b26056
BLAKE2b-256 2a171fdc154e75d24d8c20c42b71bae1b5cf752453f0fc3a2504bbb810293dd1

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0
MD5 207a678bea75227428e7fb84d4dc457a
BLAKE2b-256 b1976694e0855b11be0fd8598d484c09edd876ec738a8741025dee072f026c33

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d
MD5 7359adc233874898ea768cd4aec28bb3
BLAKE2b-256 da3c3ff05c2855eee52588f489a4e607e4a61699a0742aa03ccf641c77f9eb0a

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.26.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186
MD5 fb437346dac24d0cb23f5314db043c8b
BLAKE2b-256 ac6bea1405e449059f1e2be85f55d025598c11375c8d64cdf763506b22c244ab

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8
MD5 014250db593d589b5533ef7127839c46
BLAKE2b-256 2117f9ab7b9f3b46c7d6b024d129259fd5d276aed9047e424537c48ca2e43339

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7
MD5 f160632f128a3fd46787aa02d8731fbb
BLAKE2b-256 8165abb5808f13e96145b691bfe75cd8c4b7a94a6acfc5db0e8111ea17015675

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b
MD5 03131896abade61b77e0f6e53abb988a
BLAKE2b-256 b6ab5b893944b1602a366893559bfb227fdfb3ad7c7629b2a80d039bb5924367

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a
MD5 feae1190c73d811e2e7ebcad4baf6edf
BLAKE2b-256 f19751eb4aa087e95138477e2140b17cd795fb379b1669432413dfad68f535c1

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1
MD5 7170545dcc2a38a1c2386a6081043b64
BLAKE2b-256 2e54218ce51bb571a70975f223671b2a86aa951e83abfd2a416a3d540f35115c

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841
MD5 676740bf60fb1c8f5a6b31e00b9a4e9b
BLAKE2b-256 513b2ba379bf754f13041e3d8b994394e78c69cdb9d1e5dd1dba9404b24afbdf

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919
MD5 49871452488e1a55d15ab54c6f3e546e
BLAKE2b-256 24b5fed6f7e582937eb947369dccf6c94602598a25f23e482d1b1f2299159328

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.26.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9
MD5 f22f5ea26c86eb126ff502fff75d6c21
BLAKE2b-256 15b7a7acec96d8c58bf40a24c9fccce988a819840692762e16bf1fc256e1c26a

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523
MD5 4f45d3f69f54fd1638609fde34c33a5c
BLAKE2b-256 6c890ef844673002e08444881bff4b6d2a940fbce934d8cd431aa76c8e46e42a

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe
MD5 7a6be7c6c1cc3e1ff73f64052fe30677
BLAKE2b-256 b9f001a7dade8233e6f3c380e2b271aedc98dd1902363661adfb8ab4364c5629

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00
MD5 ea9127a3a03f27fd101c62425c661d8d
BLAKE2b-256 6441284783f1014685201e447ea976e85fed0e351f5debbaf3ee6d7645521f1d

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75
MD5 2953687fb26e1dd8a2d1bb7109551fcd
BLAKE2b-256 3839f726e49ca91cbc336ff297d458dd20b4db2a4204198b075b7f7cc3d3c0ba

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440
MD5 4b741c6dfe4e6e22e34e9c5c788d4f04
BLAKE2b-256 2facbe1f2767b7222347d2fefc18d8d58e9febfd9919190cc6fbd8a4d22d6eab

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f
MD5 1a5dc6b5b3bf11ad40a59eedb3b69fa1
BLAKE2b-256 76acdea2939dfc3c591a2494121669455fd7d049248ef284c9542904ddbe05d5

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060
MD5 b8e52ecac110471502686abbdf774b78
BLAKE2b-256 0734748ec8c81235277f62cc04488052fe28b8b69280e7275bbb8dc143cd7791

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.26.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for numpy-1.26.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80
MD5 4e4e4d8cf661a8d2838ee700fabae87e
BLAKE2b-256 9794002acbb61f9cca0069e6854c04b893d8a7bc44130a4c333a497b23a399da

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36
MD5 5a6d6ac287ebd93a221e59590329e202
BLAKE2b-256 8f17106fbd94a661c3dbbb2a888a8b6624405c9aa44720d90683ba1c559a8de4

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210
MD5 01d2abfe8e9b35415efb791ac6c5865e
BLAKE2b-256 ed09433eadf9e1ea99e44011139395fcb01d236a674628e9ebacb079bf512622

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818
MD5 1d1bd7e0d2a89ce795a9566a38ed9bb5
BLAKE2b-256 2f75f007cc0e6a373207818bef17f463d3305e9dd380a70db0e523e7660bf21f

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3
MD5 b52c1e987074dad100ad234122a397b9
BLAKE2b-256 376540ed08f156264e02cc2362ed194bc84daed61d8d2bc6b0ed45cfe024964f

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2
MD5 9932ccff54855f12ee24f60528279bf1
BLAKE2b-256 20be46eed58d8ca60cfd0c4f3c6db3db79955f6de7d434db0f49fed2f817a6a4

See more details on using hashes here.

File details

Details for the file numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef
MD5 28e1bc3efaf89cf6f0a2b616c0e16401
BLAKE2b-256 b1c0563ef35266a30adfb9801bd1b366bc4f67ff9cfed5e707ae2831b3f6a27c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page