Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-1.26.3.tar.gz (15.7 MB view details)

Uploaded Source

Built Distributions

numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl (15.7 MB view details)

Uploaded PyPy Windows x86-64

numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (20.5 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-1.26.3-cp312-cp312-win_amd64.whl (15.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-1.26.3-cp312-cp312-win32.whl (20.0 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl (17.8 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl (20.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-1.26.3-cp311-cp311-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-1.26.3-cp311-cp311-win32.whl (20.8 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-1.26.3-cp310-cp310-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-1.26.3-cp310-cp310-win32.whl (20.8 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-1.26.3-cp39-cp39-win_amd64.whl (15.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-1.26.3-cp39-cp39-win32.whl (20.8 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl (18.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (18.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (14.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl (14.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-1.26.3.tar.gz.

File metadata

  • Download URL: numpy-1.26.3.tar.gz
  • Upload date:
  • Size: 15.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3.tar.gz
Algorithm Hash digest
SHA256 697df43e2b6310ecc9d95f05d5ef20eacc09c7c4ecc9da3f235d39e71b7da1e4
MD5 1c915dc6c36dd4c674d9379e9470ff8b
BLAKE2b-256 d0b013e2b50c95bfc1d5ee04925eb5c105726c838f922d0aaddd57b7c8be0f8b

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a8474703bffc65ca15853d5fd4d06b18138ae90c17c8d12169968e998e448bb5
MD5 b931c14d06cc37d85d63ed1ddd88e875
BLAKE2b-256 e74302684ed09a6a317773d61055ed89d4056bd069fed2dec88ed3d1e5f4397f

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46f47ee566d98849323f01b349d58f2557f02167ee301e5e28809a8c0e27a2d0
MD5 0bdb19040525451553fb5758b65caf4c
BLAKE2b-256 f412130b6df00105300ab8a096fc1ec0356235d08cf5706f52bae4e19f5dadcf

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3c67423b3703f8fbd90f5adaa37f85b5794d3366948efe9a5190a5f3a83fc34e
MD5 e8887a14750161709636e9fb87df4f36
BLAKE2b-256 7786503c9fb73bb4a11b3abf4c12fef24d19f66f738a5c7f6af169ec62b5bc8b

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 da4b0c6c699a0ad73c810736303f7fbae483bcb012e38d7eb06a5e3b432c981b
MD5 495d9534961d7b10f16fec4515a3d72b
BLAKE2b-256 ad1152fbe97fd84c91105b651d25a122f8deed6d3519afb14f9771fac1c9b7de

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-1.26.3-cp312-cp312-win32.whl
  • Upload date:
  • Size: 20.0 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f73497e8c38295aaa4741bdfa4fda1a5aedda5473074369eca10626835445511
MD5 a4857b2f7b6a23bca41178bd344bb28a
BLAKE2b-256 3f55cd123e8d88a98d0bcc69a707f3dae8bfde64206040a826a030c241850014

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8ed07a90f5450d99dad60d3799f9c03c6566709bd53b497eb9ccad9a55867f36
MD5 07c9f8f86f45077febc46c87ebc0b644
BLAKE2b-256 d017196d1b92de1bd3ca1519586845c2607e4e1a8a60f442fa084b15794b449a

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 77810ef29e0fb1d289d225cabb9ee6cf4d11978a00bb99f7f8ec2132a84e0166
MD5 9274f5c51fa4f3c8fac5efa3d78acd63
BLAKE2b-256 51d4471df72f4662bcebb670eb9b5e07eca4b5a5229559ab0447cad34df815e0

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f24750ef94d56ce6e33e4019a8a4d68cfdb1ef661a52cdaee628a56d2437419
MD5 c44a1998965d45ec136078ee09d880f2
BLAKE2b-256 c4c6f971d43a272e574c21707c64f12730c390f2bfa6426185fbdf0265a63cbd

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7f784e13e598e9594750b2ef6729bcd5a47f6cfe4a12cca13def35e06d8163e3
MD5 9f21f1875c92425cec1060564b3abb1c
BLAKE2b-256 0d28c71314812a93fea1a1b68f54cbc3e530ed4d1118242bed6f4f3dd793c519

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12c70ac274b32bc00c7f61b515126c9205323703abb99cd41836e8125ea0043e
MD5 c678d909ebe737fdabf215d8622ce2a3
BLAKE2b-256 949cf1e88764737c126637d0434df712b1baa371a404a3e3751ee997e74e164b

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a7081fd19a6d573e1a05e600c82a1c421011db7935ed0d5c483e9dd96b99cf13
MD5 bea43600aaff3a4d9978611ccfa44198
BLAKE2b-256 6d665ea5b8ef7cb3f72ecd6c905abc2331f999bf7e9de247f9db8cc9642f0eda

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 39763aee6dfdd4878032361b30b2b12593fb445ddb66bbac802e2113eb8a6ac4
MD5 c33f2a4518bae535645357a08a93be1a
BLAKE2b-256 992bf7114983d84303019385d93d24d729aedba67be7e083286f114188943cf3

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-1.26.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7ca4f24341df071877849eb2034948459ce3a07915c2734f1abb4018d9c49d7b
MD5 3ab3757255feb54ca3793fb9db226586
BLAKE2b-256 e3a1c452b0d7553b5fdef4f6215458d65a39ef975f4e3a4f6ed75431fea9f2a3

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 51c7f1b344f302067b02e0f5b5d2daa9ed4a721cf49f070280ac202738ea7f00
MD5 47ed42d067ce4863bbf1f40da61ba7d1
BLAKE2b-256 59664322e23e002e06f9c460a82526a6e5e0851057f95cc37539c618792afb28

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 af36e0aa45e25c9f57bf684b1175e59ea05d9a7d3e8e87b7ae1a1da246f2767e
MD5 c99962375c599501820899c8ccab6960
BLAKE2b-256 b43790372bae061bc540dd0fce29a143556b1f30912488a27ca0b4104aacfc6b

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f25e2811a9c932e43943a2615e65fc487a0b6b49218899e62e426e7f0a57eeda
MD5 2cc0d8b073dfd55946a60ba8ed4369f6
BLAKE2b-256 5a62007b63f916aca1d27f5fede933fda3315d931ff9b2c28b9c2cf388cd8edb

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c66d6fec467e8c0f975818c1796d25c53521124b7cfb760114be0abad53a0a2
MD5 304dec822b508a1d495917610e7562bf
BLAKE2b-256 242bdc80804801369b38681f3a61b48c8c5f1cc1e2651d2d504b9a1f6040bdb1

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9e87562b91f68dd8b1c39149d0323b42e0082db7ddb8e934ab4c292094d575d6
MD5 fb1ae72749463e2c82f0127699728364
BLAKE2b-256 5578f85aab3bda3ddffe6ce8c590190b5f0d2e61dfd2fb7a8f446dcb4f8c12c7

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b831295e5472954104ecb46cd98c08b98b49c69fdb7040483aff799a755a7374
MD5 28e4b2ed9192c392f792d88b3c246d1c
BLAKE2b-256 42db82cc805d96ba48622fbb7395a7b44cf59567fca235e397cdf64555081773

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 9e1591f6ae98bcfac2a4bbf9221c0b92ab49762228f38287f6eeb5f3f55905ce
MD5 7718a5d33344784ca7821f3bdd467550
BLAKE2b-256 beb0611101990ddac767e54e2d27d1f4576ae1662cca64e2d55ef0e62558ec26

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-1.26.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 21a9484e75ad018974a2fdaa216524d64ed4212e418e0a551a2d83403b0531d3
MD5 2655440d61671b5e32b049d30397c58f
BLAKE2b-256 1bcd1cc4d347118df8ba3f58de2dd95a57f755d486b238946917d5cbf6af903a

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b1240f767f69d7c4c8a29adde2310b871153df9b26b5cb2b54a561ac85146485
MD5 cfdde5868e469fb27655ea73b0b9593b
BLAKE2b-256 d41c839e2308aa3b2dc52e3ae0443b5a0d3971d1f096f76dab0cf8424af157cd

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 211ddd1e94817ed2d175b60b6374120244a4dd2287f4ece45d49228b4d529178
MD5 b866c6aea8070c0753b776d2b521e875
BLAKE2b-256 9ba535fde0de93145e4cec0543ce4413b4a96769a6f9714aa1c6cfa29011a4b9

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdd2b45bf079d9ad90377048e2747a0c82351989a2165821f0c96831b4a2a54b
MD5 0f98a05c92598f849b1be2595f4a52a8
BLAKE2b-256 a537d1453c9ff4f7630e68ec036c6fb56ba0d7c769daa8a4083cb4ef8ee45995

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6d45b3ec2faed4baca41c76617fcdcfa4f684ff7a151ce6fc78ad3b6e85af0a6
MD5 b71cd0710cec5460292a97a02fa349cd
BLAKE2b-256 37ecef1623be30884230e9fbc689bc1ad4f096b6155b54ddbc1b8726333411c0

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02f98011ba4ab17f46f80f7f8f1c291ee7d855fcef0a5a98db80767a468c85cd
MD5 98d5b98c822de4bed0cf1b0b8f367192
BLAKE2b-256 a08a2bd4712558ba18a31b52873bc2ecf473a7d264d10f3d16be4f83d7bf31a7

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 806dd64230dbbfaca8a27faa64e2f414bf1c6622ab78cc4264f7f5f028fee3bf
MD5 7660db27715df261948e7f0f13634f16
BLAKE2b-256 3347fc483df0b7ddeee987b6ff146c879d3556fcea82cc9aa4203d16e5871c62

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-1.26.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 867e3644e208c8922a3be26fc6bbf112a035f50f0a86497f98f228c50c607bb2
MD5 08e1b0973d0ae5976b38563eaec1253f
BLAKE2b-256 ead5e90d3ea242739453eccbdfc67f2cb4a13cdeddbea4e4cba2b2e8cba1ae29

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-1.26.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.1

File hashes

Hashes for numpy-1.26.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9bc6d1a7f8cedd519c4b7b1156d98e051b726bf160715b769106661d567b3f03
MD5 e813aa59cb807efb4a8fee52a6dd41ba
BLAKE2b-256 4bdba625c63df0ad581b8c7bc170f5fbd3894d48af3ea751338aa8044277cfe6

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cc0743f0302b94f397a4a65a660d4cd24267439eb16493fb3caad2e4389bccbb
MD5 718bd35dd0431a6434bb30bf8d91d77d
BLAKE2b-256 49f9cc7411f223d647bb985f09e2226d27d366c8578898cc806f2ba91a50b3bc

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 b8c275f0ae90069496068c714387b4a0eba5d531aace269559ff2b43655edd58
MD5 adec00ea2bc98580a436f82e188c0e2f
BLAKE2b-256 9aee6df4c886f4a3ea713e41b794504719298e77b6bf476b6ef2c213f65ca6b3

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4d362e17bcb0011738c2d83e0a65ea8ce627057b2fdda37678f4374a382a137
MD5 09848456158a01feff28f88c6106aef1
BLAKE2b-256 eaee7a93594b78d7834d14ff49e74ba79e3f26b85604a542a790db81b1dd2326

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0b7e807d6888da0db6e7e75838444d62495e2b588b99e90dd80c3459594e857b
MD5 c856adc6a6a78773c43e9c738d662ed5
BLAKE2b-256 652d1ea2c43727f328485ab0dbad9b657de7b471e235b84008f192868276b4c3

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18c3319a7d39b2c6a9e3bb75aab2304ab79a811ac0168a671a62e6346c29b03f
MD5 515a7314a0ff6aaba8d53a7a1aaa73ab
BLAKE2b-256 bf5ae958ac00a4e3099c01a7813c4fa61c47317f75540f56f57adcb53b37bdea

See more details on using hashes here.

File details

Details for the file numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.26.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1666f634cb3c80ccbd77ec97bc17337718f56d6658acf5d3b906ca03e90ce87f
MD5 6494f2d94fd1f184923a33e634692b5e
BLAKE2b-256 7cf177df3d637d8acdb3ea118bc8646c22eaf7c2145416313d038a8efc77eeea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page