NumPy: array processing for numbers, strings, records, and objects.
Project description
- NumPy is a general-purpose array-processing package designed to
efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.
There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
numpy-1.6.1.zip
(3.4 MB
view hashes)
numpy-1.6.1.tar.gz
(2.6 MB
view hashes)
Built Distributions
numpy-1.6.1.win32-py3.2.exe
(2.7 MB
view hashes)
numpy-1.6.1.win32-py3.1.exe
(2.7 MB
view hashes)
numpy-1.6.1.win32-py2.7.exe
(2.6 MB
view hashes)
numpy-1.6.1.win32-py2.6.exe
(2.6 MB
view hashes)
numpy-1.6.1.win32-py2.5.exe
(2.5 MB
view hashes)
Close
Hashes for numpy-1.6.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bd0a2a68903f1b286dd646f42f92f7de7bde6bbf3c4829a3f078400f48fa1e7 |
|
MD5 | 5eb7aa006bac4ee844ff579c09516224 |
|
BLAKE2b-256 | a6b9a9e4411c08a568a9558e4d4efc15cd26cf9f2f84e4d7ea800742fedb858c |
Close
Hashes for numpy-1.6.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a20beec53bfa9fecf46c1daa78ba558a161ca483de8d5471b5e9ca07bfc09ea |
|
MD5 | ed05d3f03f8f78475549e4d502244828 |
|
BLAKE2b-256 | 443b63aa0464c495de6bac1f9f5a6c4626264ea07ad85b51cf6ebfdbbaa9fab4 |
Close
Hashes for numpy-1.6.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5844f975f35d011b029fe55a5ee92c1801e5ac7a1d2af2155a9c75492bcaa364 |
|
MD5 | b5c16ef11d52d1431a1c735b636decc3 |
|
BLAKE2b-256 | 452523e8f084706cebdfbe19064f6195b129122e9b7cd2ce218897f8e8608759 |
Close
Hashes for numpy-1.6.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dc401181cabcbe4ab6a9f0951764899e76f38e93c0bb78ec0e9491ff88570158 |
|
MD5 | 24617ed5b551bead42bd354339d160cf |
|
BLAKE2b-256 | d60ddee7abf1e1eedd50517c6c96d161b0528a9231626866ca43a0d9c3bff1f2 |
Close
Hashes for numpy-1.6.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a1545cbf3a25718722fc53dfe7de0e5a63aa567dea4915ced07d026c85e172c5 |
|
MD5 | 9d385bac49afa4c57015a942065aea46 |
|
BLAKE2b-256 | a847aa5823f1f185ddb2c3f3413ecbb213ffbad67909e620bcf2d891659a2bfb |