Skip to main content

NumPy: array processing for numbers, strings, records, and objects.

Project description

NumPy is a general-purpose array-processing package designed to

efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications.

There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

numpy-1.8.1.zip (4.3 MB view details)

Uploaded Source

numpy-1.8.1.tar.gz (3.8 MB view details)

Uploaded Source

Built Distributions

numpy-1.8.1-cp34-cp34m-manylinux1_x86_64.whl (14.7 MB view details)

Uploaded CPython 3.4m

numpy-1.8.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.4m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.1-cp33-cp33m-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 3.3m

numpy-1.8.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.3m macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl (12.0 MB view details)

Uploaded CPython 2.7 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

numpy-1.8.1-cp27-cp27mu-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7mu

numpy-1.8.1-cp27-cp27m-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.7m

numpy-1.8.1-cp26-cp26mu-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.6mu

numpy-1.8.1-cp26-cp26m-manylinux1_x86_64.whl (14.6 MB view details)

Uploaded CPython 2.6m

File details

Details for the file numpy-1.8.1.zip.

File metadata

  • Download URL: numpy-1.8.1.zip
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.8.1.zip
Algorithm Hash digest
SHA256 80316c1743f10f2fb7d42c8dd70efda2ad9e104d532c1f18f1b665e86f694fa0
MD5 b8b3a99d6ed0913543abb49911205e95
BLAKE2b-256 3e0cd8b5d5095988024ef68959bdec151e108138208214dbfe1e2658b1bc50ed

See more details on using hashes here.

File details

Details for the file numpy-1.8.1.tar.gz.

File metadata

  • Download URL: numpy-1.8.1.tar.gz
  • Upload date:
  • Size: 3.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for numpy-1.8.1.tar.gz
Algorithm Hash digest
SHA256 3d722fc3ac922a34c50183683e828052cd9bb7e9134a95098441297d7ea1c7a9
MD5 be95babe263bfa3428363d6db5b64678
BLAKE2b-256 589880b1c502a149e4e6de900c0cd16e5a71c47313b12365aacbbd7e2eb206c2

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1170d343cae03c654af246d62eb3da1535e2dec5660281e3277df208aea1ca9c
MD5 19261ffdb8eb3e3494f35bf40cac67de
BLAKE2b-256 a0e64b0426a0a6a454bec23885b91e066a75eef1d0f26c4612a1273b2f48976a

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9b9b2cba20ecac1baa27099162f3e4d63b1109873b6e805d0bb06bbb95163a3
MD5 31152d55a97cbd655c4eb743d93c4f96
BLAKE2b-256 193c6f4512b8f5499f75b0c2fa4e6678ee442a0306062ab3130485379d0e4d29

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp33-cp33m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp33-cp33m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bff0d1221903db201baecc1e6790561ecd78cf33a4269e1175b98d447c0dac04
MD5 63b6fd01c3fccc62b2c7ed00206bee54
BLAKE2b-256 014e39906035991a26b64d3eb7943323b96b59b07159baab526ef49091e38286

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp33-cp33m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d39aa6865436fb791a3ce401dacbd8fb76150a94a751e0a19d90be80d3848846
MD5 d943838035a805925fcbf53204aff1a9
BLAKE2b-256 4e219273aa1b6a34443323124c9eafd766bcb9667d4dc7c919d4ea477f639bea

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5568945b9fa1c0055bf9f4396cfd7e4dc55e2726573c1f087830ccd4dc1524f1
MD5 b1127fadbfce9bc0f324ce52fe8efa48
BLAKE2b-256 34342c153427b869cf2664ac2c44a2af6ab25bc787a341e548ffcd3d444c1780

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0869e76ddbe9eb6a018a97093feefc6fd643dc785e7283c5fb441c2c200dfc08
MD5 1f39eba46468ba8b55536715663b1b86
BLAKE2b-256 238bf3c0c61372dfce775470d35d6d6be4c773d90ddd8db75792be4fc5ec4b90

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 67c33251eca4f982184ae50a8eb55a3a25994b1335fbfd404d2858524293c534
MD5 c4707df4b3eb39217c538b94f2d5dc0d
BLAKE2b-256 24cb20ca30ce0b0c15a0f5c4c70451095b91bbcb020fd7acf9f6d8c72230076b

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp26-cp26mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp26-cp26mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5b6cf8a2553afb667dce5ccb95d4db01b5839e936e4a9aab9a7688294ac79f69
MD5 8db44fe15e89119ec358865a0b7a0c42
BLAKE2b-256 f54cba9424e4e17f031561375c8d6eb2fa76fe0778555705720b2b6707fccb36

See more details on using hashes here.

File details

Details for the file numpy-1.8.1-cp26-cp26m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-1.8.1-cp26-cp26m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e7c39079eabca6e3f389091b1954fd09d460a983207619fb73e1ad76577b9724
MD5 62c4bdbcf2e102cadcc9f73ed55fdb1f
BLAKE2b-256 f9df96b070be74d08741f7207d6fce16232a7e943ebca0c60fba0af3828d3bf9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page