Skip to main content

Fundamental package for array computing in Python

Project description


Powered by NumFOCUS PyPI Downloads Conda Downloads Stack Overflow Nature Paper OpenSSF Scorecard

NumPy is the fundamental package for scientific computing with Python.

It provides:

  • a powerful N-dimensional array object
  • sophisticated (broadcasting) functions
  • tools for integrating C/C++ and Fortran code
  • useful linear algebra, Fourier transform, and random number capabilities

Testing:

NumPy requires pytest and hypothesis. Tests can then be run after installation with:

python -c "import numpy, sys; sys.exit(numpy.test() is False)"

Code of Conduct

NumPy is a community-driven open source project developed by a diverse group of contributors. The NumPy leadership has made a strong commitment to creating an open, inclusive, and positive community. Please read the NumPy Code of Conduct for guidance on how to interact with others in a way that makes our community thrive.

Call for Contributions

The NumPy project welcomes your expertise and enthusiasm!

Small improvements or fixes are always appreciated. If you are considering larger contributions to the source code, please contact us through the mailing list first.

Writing code isn’t the only way to contribute to NumPy. You can also:

  • review pull requests
  • help us stay on top of new and old issues
  • develop tutorials, presentations, and other educational materials
  • maintain and improve our website
  • develop graphic design for our brand assets and promotional materials
  • translate website content
  • help with outreach and onboard new contributors
  • write grant proposals and help with other fundraising efforts

For more information about the ways you can contribute to NumPy, visit our website. If you’re unsure where to start or how your skills fit in, reach out! You can ask on the mailing list or here, on GitHub, by opening a new issue or leaving a comment on a relevant issue that is already open.

Our preferred channels of communication are all public, but if you’d like to speak to us in private first, contact our community coordinators at numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for an invitation).

We also have a biweekly community call, details of which are announced on the mailing list. You are very welcome to join.

If you are new to contributing to open source, this guide helps explain why, what, and how to successfully get involved.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpy-2.0.2.tar.gz (18.9 MB view details)

Uploaded Source

Built Distributions

numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl (15.8 MB view details)

Uploaded PyPy Windows x86-64

numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl (6.8 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (21.0 MB view details)

Uploaded PyPy macOS 10.9+ x86-64

numpy-2.0.2-cp312-cp312-win_amd64.whl (15.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

numpy-2.0.2-cp312-cp312-win32.whl (6.2 MB view details)

Uploaded CPython 3.12 Windows x86

numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl (14.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl (19.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl (5.0 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl (13.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpy-2.0.2-cp311-cp311-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

numpy-2.0.2-cp311-cp311-win32.whl (6.5 MB view details)

Uploaded CPython 3.11 Windows x86

numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpy-2.0.2-cp310-cp310-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

numpy-2.0.2-cp310-cp310-win32.whl (6.5 MB view details)

Uploaded CPython 3.10 Windows x86

numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpy-2.0.2-cp39-cp39-win_amd64.whl (15.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

numpy-2.0.2-cp39-cp39-win32.whl (6.5 MB view details)

Uploaded CPython 3.9 Windows x86

numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl (14.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl (19.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (13.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl (5.3 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl (13.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpy-2.0.2.tar.gz.

File metadata

  • Download URL: numpy-2.0.2.tar.gz
  • Upload date:
  • Size: 18.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2.tar.gz
Algorithm Hash digest
SHA256 883c987dee1880e2a864ab0dc9892292582510604156762362d9326444636e78
MD5 d517a3be706295c4a4c8f75f5ee7b261
BLAKE2b-256 a97510dd1f8116a8b796cb2c737b674e02d02e80454bda953fa7e65d8c12b016

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a46288ec55ebbd58947d31d72be2c63cbf839f0a63b49cb755022310792a3385
MD5 b99eff795ca26f8a513aace76a45a356
BLAKE2b-256 ccdcd330a6faefd92b446ec0f0dfea4c3207bb1fef3c4771d19cf4543efd2c78

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26df23238872200f63518dd2aa984cfca675d82469535dc7162dc2ee52d9dd5c
MD5 fcbe2e38506fbbbeda509a89063563d3
BLAKE2b-256 1246de1fbd0c1b5ccaa7f9a005b66761533e2f6a3e560096682683a223631fe9

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 312950fdd060354350ed123c0e25a71327d3711584beaef30cdaa93320c392d4
MD5 918f072481d014229dd5f0f5ba75306f
BLAKE2b-256 2c9751af92f18d6f6f2d9ad8b482a99fb74e142d71372da5d834b3a2747a446e

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7f0a0c6f12e07fa94133c8a67404322845220c06a9e80e85999afe727f7438b8
MD5 a8f814da1a4509724346c14cd838b5dc
BLAKE2b-256 8f3bdf5a870ac6a3be3a86856ce195ef42eec7ae50d2a202be1f5a4b3b340e14

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 15.6 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cfd41e13fdc257aa5778496b8caa5e856dc4896d4ccf01841daee1d96465467a
MD5 8319d0b3d23285d4698cbece73b23fde
BLAKE2b-256 b2b54ac39baebf1fdb2e72585c8352c56d063b6126be9fc95bd2bb5ef5770c20

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpy-2.0.2-cp312-cp312-win32.whl
  • Upload date:
  • Size: 6.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 671bec6496f83202ed2d3c8fdc486a8fc86942f2e69ff0e986140339a63bcbe5
MD5 39724e27a003b6ce9b1bcbf251e50b4b
BLAKE2b-256 d03d08ea9f239d0e0e939b6ca52ad403c84a2bce1bde301a8eb4888c1c1543f1

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 ec9852fb39354b5a45a80bdab5ac02dd02b15f44b3804e9f00c556bf24b4bded
MD5 80a10803a3122472c1bf6c4617d0d1c5
BLAKE2b-256 71afa469674070c8d8408384e3012e064299f7a2de540738a8e414dcfd639996

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 96a55f64139912d61de9137f11bf39a55ec8faec288c75a54f93dfd39f7eb40c
MD5 e32167073981b0a1a419aaaec741773e
BLAKE2b-256 d1e91f5333281e4ebf483ba1c888b1d61ba7e78d7e910fdd8e6499667041cc35

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0123ffdaa88fa4ab64835dcbde75dcdf89c453c922f18dced6e27c90d1d0ec5a
MD5 2928ed26d7153a488bfb126424d86c8f
BLAKE2b-256 3968e9f1126d757653496dbc096cb429014347a36b228f5a991dae2c6b6cfd40

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c05e238064fc0610c840d1cf6a13bf63d7e391717d247f1bf0318172e759e692
MD5 c2c18eef5118607c0b023f6267ee9774
BLAKE2b-256 722167f36eac8e2d2cd652a2e69595a54128297cdcb1ff3931cfc87838874bd4

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 a842d573724391493a97a62ebbb8e731f8a5dcc5d285dfc99141ca15a3302d0c
MD5 4fee57e854bc3e9a267e865740438d53
BLAKE2b-256 e3ffddf6dac2ff0dd50a7327bcdba45cb0264d0e96bb44d33324853f781a8f3c

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9a92ae5c14811e390f3767053ff54eaee3bf84576d99a2456391401323f4ec2c
MD5 cc8d990a1ad3f4d66d0143ea709ccc99
BLAKE2b-256 7f19e2793bde475f1edaea6945be141aef6c8b4c669b90c90a300a8954d08f0a

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8df823f570d9adf0978347d1f926b2a867d5608f434a7cff7f7908c6570dcf5e
MD5 1bb398d93422bb9baf63c958ed1aa492
BLAKE2b-256 46921b8b8dee833f53cef3e0a3f69b2374467789e0bb7399689582314df02651

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 df55d490dea7934f330006d0f81e8551ba6010a5bf035a249ef61a94f21c500b
MD5 5ef80ec3b2db487d89c590eb301a7aa4
BLAKE2b-256 45402e117be60ec50d98fa08c2f8c48e09b3edea93cfcabd5a9ff6925d54b1c2

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 286cd40ce2b7d652a6f22efdfc6d1edf879440e53e76a75955bc0c826c7e64dc
MD5 a9a0f8e1bc4d825272514896e3b17f15
BLAKE2b-256 eb573a3f14d3a759dcf9bf6e9eda905794726b758819df4663f217d658a58695

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpy-2.0.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a392a68bd329eafac5817e5aefeb39038c48b671afd242710b451e76090e81f4
MD5 4fe937eba0fc4d28a65c0ba571c809fc
BLAKE2b-256 5cca0f0f328e1e59f73754f06e1adfb909de43726d4f24c6a3f8805f34f2b0fa

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c1c9307701fec8f3f7a1e6711f9089c06e6284b3afbbcd259f7791282d660a15
MD5 d8bf100186e6cd1b2f27eb617ba9e581
BLAKE2b-256 df87f76450e6e1c14e5bb1eae6836478b1028e096fd02e85c1c37674606ab752

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9ea91dfb7c3d1c56a0e55657c0afb38cf1eeae4544c208dc465c3c9f3a7c09f9
MD5 dfb9a7b7fe218e931b0dfb885a8250d6
BLAKE2b-256 ba868767f3d54f6ae0165749f84648da9dcc8cd78ab65d415494962c86fac80f

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13e689d772146140a252c3a28501da66dfecd77490b498b168b501835041f951
MD5 cfa726b6d5445687020fc4d4f7191e42
BLAKE2b-256 baa8c17acf65a931ce551fee11b72e8de63bf7e8a6f0e21add4c937c83563538

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a15f476a45e6e5a3a79d8a14e62161d27ad897381fecfa4a09ed5322f2085669
MD5 36ea96e0be954896597543d726157eda
BLAKE2b-256 a072cfc3a1beb2caf4efc9d0b38a15fe34025230da27e1c08cc2eb9bfb1c7231

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 8cafab480740e22f8d833acefed5cc87ce276f4ece12fdaa2e8903db2f82897a
MD5 a40f473db729ea10ae401ce71899120a
BLAKE2b-256 0e78a3e4f9fb6aa4e6fdca0c5428e8ba039408514388cf62d89651aade838269

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 807ec44583fd708a21d4a11d94aedf2f4f3c3719035c76a2bbe1fe8e217bdc57
MD5 5fd12e0dd7162ea9599c49bbb6e6730e
BLAKE2b-256 c1ca2f384720020c7b244d22508cb7ab23d95f179fcfff33c31a6eeba8d6c512

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11a76c372d1d37437857280aa142086476136a8c0f373b2e648ab2c8f18fb195
MD5 86fc67666fc6e27740fde7dacb19c484
BLAKE2b-256 4ad932de45561811a4b87fbdee23b5797394e3d1504b4a7cf40c10199848893e

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49ca4decb342d66018b01932139c0961a8f9ddc7589611158cb3c27cbcf76448
MD5 f11d11bfa3aaf371d2e7fa0160e3208b
BLAKE2b-256 8bcf034500fb83041aa0286e0fb16e7c76e5c8b67c0711bb6e9e9737a717d5fe

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c7b0be4ef08607dd04da4092faee0b86607f111d5ae68036f16cc787e250a131
MD5 12c097ef2c7492282a5514b5c4b68784
BLAKE2b-256 10053442317535028bc29cf0c0dd4c191a4481e8376e9f0db6bcf29703cadae6

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpy-2.0.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 984d96121c9f9616cd33fbd0618b7f08e0cfc9600a7ee1d6fd9b239186d19d97
MD5 9703a02ca6b63ca53f83660d089f4294
BLAKE2b-256 22ad77e921b9f256d5da36424ffb711ae79ca3f451ff8489eeca544d0701d74a

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 d731a1c6116ba289c1e9ee714b08a8ff882944d4ad631fd411106a30f083c326
MD5 e31136ecc97bb76b3cb7e86bfc9471ac
BLAKE2b-256 3edf2619393b1e1b565cd2d4c4403bdd979621e2c4dea1f8532754b2598ed63b

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a61ec659f68ae254e4d237816e33171497e978140353c0c2038d46e63282d0c8
MD5 3717a5deda20f465720717a1a7a293a6
BLAKE2b-256 257f0b209498009ad6453e4efc2c65bcdf0ae08a182b2b7877d7ab38a92dc542

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 496f71341824ed9f3d2fd36cf3ac57ae2e0165c143b55c3a035ee219413f3318
MD5 6cffef937fe67a3879abefd3d2c40fb8
BLAKE2b-256 fa66f7177ab331876200ac7563a580140643d1179c8b4b6a6b0fc9838de2a9b8

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2da5960c3cf0df7eafefd806d4e612c5e19358de82cb3c343631188991566ccd
MD5 972f4366651a1a2ef00f630595104d15
BLAKE2b-256 f9a3561c531c0e8bf082c5bef509d00d56f82e0ea7e1e3e3a7fc8fa78742a6e5

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 becfae3ddd30736fe1889a37f1f580e245ba79a5855bff5f2a29cb3ccc22dd7b
MD5 a0a26dadf73264d31b7a6952b816d7c8
BLAKE2b-256 6e167bfcebf27bb4f9d7ec67332ffebee4d1bf085c84246552d52dbb548600e7

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8c5713284ce4e282544c68d1c3b2c7161d38c256d2eefc93c1d683cf47683e66
MD5 a94f34bec8a62dab95ce9883a87a82a6
BLAKE2b-256 ec31cc46e13bf07644efc7a4bf68df2df5fb2a1a88d0cd0da9ddc84dc0033e51

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f15975dfec0cf2239224d80e32c3170b1d168335eaedee69da84fbe9f1f9cd04
MD5 ecce0a682c2ccaaa14500b87ffb69f63
BLAKE2b-256 053326178c7d437a87082d11019292dce6d3fe6f0e9026b7b2309cbf3e489b1d

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51129a29dbe56f9ca83438b706e2e69a39892b5eda6cedcb6b0c9fdc9b0d3ece
MD5 ae4bc199b56d20305984b7465d6fbdf1
BLAKE2b-256 21913495b3237510f79f5d81f2508f9f13fea78ebfdf07538fc7444badda173d

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpy-2.0.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 15.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a3f4ab0caa7f053f6797fcd4e1e25caee367db3112ef2b6ef82d749530768c73
MD5 f5dc31c5530037c4d1d990696b1d041c
BLAKE2b-256 ea2b7fc9f4e7ae5b507c1a3a21f0f15ed03e794c1242ea8a242ac158beb56034

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpy-2.0.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for numpy-2.0.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 905d16e0c60200656500c95b6b8dca5d109e23cb24abc701d41c02d74c6b3afa
MD5 71557f67f24d39db709cc4ccb85ae5b5
BLAKE2b-256 c8a6177dd88d95ecf07e722d21008b1b40e681a929eb9e329684d449c36586b2

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 9189427407d88ff25ecf8f12469d4d39d35bee1db5d39fc5c168c6f088a6956d
MD5 dcf448ef80720bae7de6724f92499754
BLAKE2b-256 f146ea25b98b13dccaebddf1a803f8c748680d972e00507cd9bc6dcdb5aa2ac1

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5fec9451a7789926bcf7c2b8d187292c9f93ea30284802a0ab3f5be8ab36865d
MD5 05d8465b87ca983eee044b66bc725391
BLAKE2b-256 264c0eeca4614003077f68bfe7aac8b7496f04221865b3a5e7cb230c9d055afd

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f26b258c385842546006213344c50655ff1555a9338e2e5e02a0756dc3e803dd
MD5 4e8255cdff60de62944aed1f4235ff68
BLAKE2b-256 b91478635daab4b07c0930c919d451b8bf8c164774e6a3413aed04a6d95758ce

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1e795a8be3ddbac43274f18588329c72939870a16cae810c2b73461c40718ab1
MD5 96477b8563e6d4e2db710f4915a4c5e0
BLAKE2b-256 15319dffc70da6b9bbf7968f6551967fc21156207366272c2a40b4ed6008dc9b

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 97032a27bd9d8988b9a97a8c4d2c9f2c15a81f61e2f21404d7e8ef00cb5be729
MD5 fe447af86983ef2262e605a941bd46af
BLAKE2b-256 2d98121996dcfb10a6087a05e54453e28e58694a7db62c5a5a29cee14c6e047b

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 2b2955fa6f11907cf7a70dab0d0755159bca87755e831e47932367fc8f2f2d0b
MD5 26a5c8dec993258522fcef84ef0c040e
BLAKE2b-256 96ff06d1aa3eeb1c614eda245c1ba4fb88c483bee6520d361641331872ac4b82

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 423e89b23490805d2a5a96fe40ec507407b8ee786d66f7328be214f9679df6dd
MD5 47347c028f6ccf47d6a22724111fc96f
BLAKE2b-256 39bcfd298f308dcd232b56a4031fd6ddf11c43f9917fbc937e53762f7b5a3bb1

See more details on using hashes here.

File details

Details for the file numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpy-2.0.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9059e10581ce4093f735ed23f3b9d283b9d517ff46009ddd485f1747eb22653c
MD5 da0f655880bbcb53094816b77cd493d1
BLAKE2b-256 43c141c8f6df3162b0c6ffd4437d729115704bd43363de0090c7f913cfbc2d89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page