prints numpy arrays nicely
Project description
NumpyPrint
Numpyprint uses the Package prettytable to print numpy arrays in a nice format. At the moment this works well until a 2D Dimension.
Installation
pip install numpyprint
or
python3 -m pip install numpyprint
What is it
NumpyPrint nicely prints an numpy array with the help of the package PrettyTable. It prints arrays of any dimension.
Example
import numpy as np
from numpyprint import np_print
numpy_array = np.random.rand(1,2,3)*100
np_print(numpy_array)
The output with the default settings looks like this:
+---+----------------------------+---------------------------+
| 0 | +---+--------------------+ | +---+-------------------+ |
| | | 0 | 40.361415789985486 | | | 0 | 89.54304456427288 | |
| | | 1 | 42.44964170184573 | | | 1 | 43.11298502039822 | |
| | | 2 | 19.234562477482196 | | | 2 | 40.0682288789328 | |
| | +---+--------------------+ | +---+-------------------+ |
+---+----------------------------+---------------------------+
It prints a nice table with frame boarders and row numbers.
How to use it
Print to Console
import numpy as np
import numpyprint as npp
array = np.random.rand(3, 2, 3)*100
npp.np_print(array)
# or with change of some settings
npp.np_print(array,precision= 2 ,row_numbers= True, column_numbers= True,odd_vertical= False,style='plain')
Use it in Jupyter Notebooks
In Jupyter Notebook it is possible to use HTML to format the output. The following command prints the numpy array in a nice table.
import numpy as np
import numpyprint as npp
array = np.random.rand(3, 2)
npp.np_display(array)
Get the PrettyTable Object
If you want the PrettyTable object you can use np_format()
. But keep in mind that multidimensional arrays have nested tables.
import numpy as np
import numpyprint as npp
array = np.random.rand(3, 2)
table = npp.np_format(array)
Change the Default Settings
The defaults/settings are:
defaults=dict({
'row_numbers': True,
'column_numbers': False,
'precision': None, # None or int like 2
'style': 'default', # 'default' or 'plain'
'odd_vertical': True
})
It is possible to change it like:
import numpy as np
import numpyprint as npp
npp.defaults['precision'] = 2
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for numpyprint-0.1.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4e8a73208c4cda4712bcd453b71ef15c15bf1a65fcbfc47c711a3a530e7042f1 |
|
MD5 | 458b9ee011f3270b95d2e8abb4255c98 |
|
BLAKE2b-256 | bb745aafaf17fd8a07824afddab7a41fc310f708f46e989ed4177ce820cce2e2 |