Skip to main content

prints numpy arrays nicely

Project description

NumpyPrint

Numpyprint uses the Package prettytable to print numpy arrays in a nice format. At the moment this works well until a 2D Dimension.

Installation

pip install numpyprint

or

python3 -m pip install numpyprint

What is it ?

NumpyPrint nicely prints an numpy array with the help of the package PrettyTable. It prints arrays of any dimension.

Example

import numpy as np
from numpyprint import np_print

numpy_array = np.random.rand(1,2,3)*100
np_print(numpy_array)

The output with the default settings looks like this:

+---+----------------------------+---------------------------+
| 0 | +---+--------------------+ | +---+-------------------+ |
|   | | 0 | 40.361415789985486 | | | 0 | 89.54304456427288 | |
|   | | 1 | 42.44964170184573  | | | 1 | 43.11298502039822 | |
|   | | 2 | 19.234562477482196 | | | 2 |  40.0682288789328 | |
|   | +---+--------------------+ | +---+-------------------+ |
+---+----------------------------+---------------------------+

It prints a nice table with frame boarders and row numbers.

How to use it

Print to Console

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2, 3)*100

npp.np_print(array)

# or with change of some settings

npp.np_print(array,precision= 2 ,row_numbers= True, column_numbers= True,odd_vertical= False,style='plain')

Use in Jupyter Notebook

In Jupyter Notebook is it possible to use HTML to format the output. The following command prints the numpy array in a nice table.

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2)

npp.np_display(array)

Get the PrettyTable Object

If you want the PrettyTable object you can use np_format()

import numpy as np
import numpyprint as npp

array = np.random.rand(3, 2)

table = npp.np_format(array)

Change the Default Settings

The defaults are:

defaults=dict({
    'row_numbers': True,
    'column_numbers': False,
    'precision': None, # None or int like 2
    'style': 'default', # 'default' or 'plain'
    'odd_vertical': True
})

It is possible to change it like:

import numpy as np
import numpyprint as npp

npp.defaults['precision'] = 2

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

numpyprint-0.1.1-py3-none-any.whl (4.0 kB view details)

Uploaded Python 3

File details

Details for the file numpyprint-0.1.1-py3-none-any.whl.

File metadata

  • Download URL: numpyprint-0.1.1-py3-none-any.whl
  • Upload date:
  • Size: 4.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.1

File hashes

Hashes for numpyprint-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 961af88d00440252808a0fe43f6264808b95820c1ce80a9b2c0466f5a0b4eeec
MD5 903aef257be660613206196b41a9cef8
BLAKE2b-256 92e328069fa25ead9acdebd440ae593fe23b0fe51ed659ba7ab079756b5e9e90

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page