Skip to main content

(It is an alias for PyPyNum) PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.

Project description

PyPyNum

PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.[Python>=3.4]

 ________   ___    ___  ________   ___    ___  ________    ___  ___   _____ ______
|\   __  \ |\  \  /  /||\   __  \ |\  \  /  /||\   ___  \ |\  \|\  \ |\   _ \  _   \
\ \  \|\  \\ \  \/  / /\ \  \|\  \\ \  \/  / /\ \  \\ \  \\ \  \\\  \\ \  \\\__\ \  \
 \ \   ____\\ \    / /  \ \   ____\\ \    / /  \ \  \\ \  \\ \  \\\  \\ \  \\|__| \  \
  \ \  \___| \/  /  /    \ \  \___| \/  /  /    \ \  \\ \  \\ \  \\\  \\ \  \    \ \  \
   \ \__\  __/  / /       \ \__\  __/  / /       \ \__\\ \__\\ \_______\\ \__\    \ \__\
    \|__| |\___/ /         \|__| |\___/ /         \|__| \|__| \|_______| \|__|     \|__|
          \|___|/                \|___|/

Downloads Downloads Downloads

Version -> 1.11.2 | PyPI -> https://pypi.org/project/PyPyNum/ | Gitee -> https://www.gitee.com/PythonSJL/PyPyNum | GitHub -> https://github.com/PythonSJL/PyPyNum

LOGO

PyPI上无法显示logo,可以在Gitee或者GitHub中查看。

The logo cannot be displayed on PyPI, it can be viewed in Gitee or GitHub.

介绍

Introduction

  • 多功能数学库,类似于numpy、scipy等,专为PyPy解释器制作,亦支持其他类型的Python解释器
  • Multi functional math library, similar to numpy, scipy, etc., designed specifically for PyPy interpreters and also supports other types of Python interpreters
  • 不定期更新版本,增加更多实用功能
  • Update versions periodically to add more practical features
  • 如需联系,请添加QQ号2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)
  • If you need to contact, please add QQ number 2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)

子模块的名称与功能简介

Name and Function Introduction of Submodules

子模块名称 Submodule Name 功能简介 Function Introduction
pypynum.Array 多维数组 Multidimensional array
pypynum.chars 特殊数学符号 Special mathematical symbols
pypynum.cipher 加密解密算法 Encryption and decryption algorithm
pypynum.confs 通用配置 Universal configuration
pypynum.constants 数学常数集合 Set of mathematical constants
pypynum.dists 概率分布 Probability distribution
pypynum.equations 方程求解 Solving equations
pypynum.errors 异常对象 Exception object
pypynum.file 文件读写 File read and write
pypynum.FourierT 傅里叶变换 Fourier transform
pypynum.Geometry 几何形状 Geometric shape
pypynum.Graph 图论算法 Graph Theory Algorithm
pypynum.Group 群论算法 Group Theory Algorithm
pypynum.highprec 高精度计算 high precision computation
pypynum.image 图像处理 Image processing
pypynum.Logic 逻辑电路设计 Logic circuit design
pypynum.maths 通用数学函数 General mathematical functions
pypynum.Matrix 矩阵运算 Matrix operation
pypynum.NeuralN 神经网络训练 Neural network training
pypynum.numbers 数字处理 Number processing
pypynum.plotting 数据可视化 Data visualization
pypynum.polynomial 多项式运算 Polynomial operation
pypynum.pprinters 美化打印 Pretty printers
pypynum.Quaternion 四元数运算 Quaternion operation
pypynum.random 随机数生成 Random number generation
pypynum.regression 回归分析 Regression analysis
pypynum.sequence 数列计算 Sequence calculation
pypynum.stattest 统计检验 Statistical test
pypynum.Symbolics 符号计算 Symbol calculation
pypynum.Tensor 张量运算 Tensor operation
pypynum.test 简易测试 Easy test
pypynum.this 项目之禅 Zen of Projects
pypynum.tools 辅助函数 Auxiliary functions
pypynum.Tree 树形数据结构 Tree data structure
pypynum.types 特殊类型 Special types
pypynum.ufuncs 通用函数 Universal functions
pypynum.utils 实用工具 Utility
pypynum.Vector 向量运算 Vector operation

PyPyNum的Zen(预览)

The Zen of PyPyNum (Preview)

    The Zen of PyPyNum, by Shen Jiayi

This is a math package written purely in Python.

Elegant is superior to clunky.
Clarity trumps obscurity.
Straightforwardness is preferred over convolution.
Sophisticated is better than overcomplicated.
Flat structure beats nested hierarchies.
Sparse code wins over bloated ones.
...

Do you want to view all the content?

Enter "from pypynum import this" in your

Python interpreter and run it!
                                        February 27, 2024

与上一个版本相比功能变化

Functional changes compared to the previous version

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

新增了Config类

Added Config class

Introduction
    The Config class is designed to manage and configure application settings. It provides a mechanism to ensure consistency in configurations and prevents accidental changes by limiting attribute modification.
Roadmap
    The Config class is currently stable. Future updates may include new configuration options to support additional features.
Usage
    Modifying Configuration:
        You can modify the configuration by setting attributes directly, but only with predefined boolean values.
        config. use_latex = True # Enable LaTeX formatting
    Reading Configuration:
        You can read the current configuration by accessing the attributes.
        print(config. use_unicode) # Output: False
    Ensuring Exclusive Configuration:
        The Config class is designed to be mutually exclusive, meaning only one configuration item can be True at a time.
        config. use_std = True # This will automatically set other configuration items to False
    Getting Configuration Information:
        Use the __repr__ method to get a string representation of the current configuration.
        print(config) # Output: Config(use_latex=True, use_std=False, use_unicode=False)

修改配置时,您可以像这样导入“from pypynum import config”

When modifying the configuration, you can import 'from pypynum import config' like this

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

一些类现在支持以Unicode或LaTeX显示数据

Some classes now support displaying data in Unicode or LaTeX


Polynomial :
Standard 27x - 85x^4 + 25x^12 + 54x^42 + x^47 - 29x^61 - 73x^66 - 53x^72 - 90x^94 - 99x^97
Unicode 27x - 85x⁴ + 25x¹² + 54x⁴² + x⁴⁷ - 29x⁶¹ - 73x⁶⁶ - 53x⁷² - 90x⁹⁴ - 99x⁹⁷
LaTeX 27x - 85x^{4} + 25x^{12} + 54x^{42} + x^{47} - 29x^{61} - 73x^{66} - 53x^{72} - 90x^{94} - 99x^{97}

IntervalSet :
Standard [-94, -61) U [-41, -20] U (-1, 76] U (78, 85)
Unicode [-94, -61) ∪ [-41, -20] ∪ (-1, 76] ∪ (78, 85)
LaTeX \left[-94, -61\right) \cup \left[-41, -20\right] \cup \left(-1, 76\right] \cup \left(78, 85\right)

Matrix :
Standard
[[-65  26  81 -47]
 [ 60  85   4 -23]
 [ 27  56  86  -7]
 [ 38  79  47  76]]
LaTeX
\begin{bmatrix}-65 & 26 & 81 & -47\\60 & 85 & 4 & -23\\27 & 56 & 86 & -7\\38 & 79 & 47 & 76\end{bmatrix}


Matrix自带的latex()方法可以设置LaTeX矩阵类型与元素间距
The LaTeX() method that comes with Matrix allows you to set the LaTeX matrix type and element spacing

EXAMPLE :
>>> print(A.latex(matrix_type="vmatrix", row_spacing=5, col_spacing=5, spacing_unit="mm"))
\begin{vmatrix}-65 & \hspace{5mm} & 26 & \hspace{5mm} & 81 & \hspace{5mm} & -47\\[5mm]60 & \hspace{5mm} & 85 & \hspace{5mm} & 4 & \hspace{5mm} & -23\\[5mm]27 & \hspace{5mm} & 56 & \hspace{5mm} & 86 & \hspace{5mm} & -7\\[5mm]38 & \hspace{5mm} & 79 & \hspace{5mm} & 47 & \hspace{5mm} & 76\end{vmatrix}

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

新增了IntervalSet类

Added IntervalSet class

支持区间的各种集合运算

Support various set operations for intervals

class IntervalSet(builtins.object)
 |  __and__ = intersection(self, other)
 |  __eq__ = is_equal(self, other)
 |  __ge__ = is_superset(self, other)
 |  __gt__ = is_proper_superset(self, other)
 |  __init__(self, intervals=None)
 |      It is a set of intervals and supports multiple operations.
 |      :param intervals: A sequence containing multiple intervals
 |  __le__ = is_subset(self, other)
 |  __lt__ = is_proper_subset(self, other)
 |  __matmul__ = complement(self, other)
 |  __ne__ = is_not_equal(self, other)
 |  __or__ = union(self, other)
 |  __repr__(self, use_latex=False)
 |      Return repr(self).
 |  __sub__ = difference(self, other)
 |  __xor__ = symmetric_difference(self, other)
 |  add_interval(self, start, end, start_open=False, end_open=False)
 |  add_intervals(self, intervals)
 |  complement(self, other)
 |  difference(self, other)
 |  intersection(self, other)
 |  is_equal(self, other)
 |  is_not_equal(self, other)
 |  is_proper_subset(self, other)
 |  is_proper_superset(self, other)
 |  is_subset(self, other)
 |  is_superset(self, other)
 |  latex(self)
 |  remove_interval(self, start, end, start_open=False, end_open=False)
 |  symmetric_difference(self, other)
 |  union(self, other)

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

运行用时测试

Run Time Test

Python解释器版本

Python interpreter version

  • CPython 3.8.10

  • PyPy 3.10.12

矩阵用时测试
Matrix Time Test
NumPy+CPython(seconds) 排名
Ranking
PyPyNum+PyPy(seconds) 排名
Ranking
Mpmath_+_PyPy_(_seconds_) 排名
Ranking
SymPy_+_PyPy_(_seconds_) 排名
Ranking
创建一百阶随机数矩阵
Create a hundred order random number matrix
0.000083 1 0.005374 2 0.075253 3 0.230530 4
创建一千阶随机数矩阵
Create a thousand order random number matrix
0.006740 1 0.035666 2 1.200950 3 4.370265 4
一百阶矩阵相加
Addition of matrices of order one hundred
0.000029 1 0.002163 2 0.045641 4 0.035700 3
一千阶矩阵相加
Adding matrices of order one thousand
0.002647 1 0.019111 2 1.746957 4 0.771542 3
一百阶矩阵行列式
Determinant of a hundred order matrix
0.087209 2 0.016331 1 4.354507 3 5.157206 4
一千阶矩阵行列式
Determinant of a thousand order matrix
0.616113 1 3.509747 2 It takes a long time 3 It takes a long time 4
一百阶矩阵求逆
Finding the inverse of a hundred order matrix
0.162770 2 0.015768 1 8.162948 3 21.437424 4
一千阶矩阵求逆
Finding the inverse of a thousand order matrix
0.598905 1 17.072552 2 It takes a long time 3 It takes a long time 4
数组输出效果
Array output effect
[[[[ -7 -67]
[-78  29]]

[[-86 -97]
[ 68  -3]]]


[[[ 11  42]
[ 24 -65]]

[[-60  72]
[ 73   2]]]]
/ [[[[ 37  83]
[ 40   2]]

[[ -5 -34]
[ -7  72]]]


[[[ 13 -64]
[  6  90]]

[[ 68  57]
[ 78  11]]]]
/ [-80.0   -8.0  80.0  -88.0]
[-99.0  -43.0  87.0   81.0]
[ 20.0  -55.0  98.0    8.0]
[  8.0   44.0  64.0  -35.0]
(只支持矩阵)
(Only supports matrices)
/ ⎡⎡16   -56⎤  ⎡ 8   -28⎤⎤
⎢⎢        ⎥  ⎢        ⎥⎥
⎢⎣-56  56 ⎦  ⎣-28  28 ⎦⎥
⎢                      ⎥
⎢ ⎡-2  7 ⎤   ⎡-18  63 ⎤⎥
⎢ ⎢      ⎥   ⎢        ⎥⎥
⎣ ⎣7   -7⎦   ⎣63   -63⎦⎦
/

基本结构

Basic structure

PyPyNum
├── Array
│   ├── CLASS
│   │   └── Array(object)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── array(data: Any) -> Any
│       ├── asarray(data: Any) -> Any
│       ├── aslist(data: Any) -> Any
│       ├── fill(shape: Any, sequence: Any, repeat: Any, pad: Any, rtype: Any) -> Any
│       ├── full(shape: Any, fill_value: Any, rtype: Any) -> Any
│       ├── full_like(a: Any, fill_value: Any, rtype: Any) -> Any
│       ├── get_shape(data: Any) -> Any
│       ├── is_valid_array(_array: Any, _shape: Any) -> Any
│       ├── ones(shape: Any, rtype: Any) -> Any
│       ├── ones_like(a: Any, rtype: Any) -> Any
│       ├── zeros(shape: Any, rtype: Any) -> Any
│       └── zeros_like(a: Any, rtype: Any) -> Any
├── FourierT
│   ├── CLASS
│   │   └── FT1D(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
├── Geometry
│   ├── CLASS
│   │   ├── Circle(object)/__init__(self: Any, center: typing.Union[list, tuple], radius: typing.Union[int, float]) -> Any
│   │   ├── Line(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> Any
│   │   ├── Point(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Polygon(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Quadrilateral(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple], d: typing.Union[list, tuple]) -> Any
│   │   └── Triangle(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple]) -> Any
│   └── FUNCTION
│       └── distance(g1: Any, g2: Any, error: typing.Union[int, float]) -> float
├── Graph
│   ├── CLASS
│   │   ├── BaseGraph(object)/__init__(self: Any) -> Any
│   │   ├── BaseWeGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── DiGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── UnGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── WeDiGraph(pypynum.Graph.BaseWeGraph)/__init__(self: Any) -> Any
│   │   └── WeUnGraph(pypynum.Graph.BaseWeGraph)/__init__(self: Any) -> Any
│   └── FUNCTION
├── Group
│   ├── CLASS
│   │   └── Group(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
│       └── group(data: Any) -> Any
├── Logic
│   ├── CLASS
│   │   ├── AND(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Basic(object)/__init__(self: Any, label: Any) -> Any
│   │   ├── Binary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── COMP(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── DFF(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── FullAdder(pypynum.Logic.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── FullSuber(pypynum.Logic.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── HalfAdder(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── HalfSuber(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── JKFF(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, state: Any) -> Any
│   │   ├── NAND(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOT(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── OR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Quaternary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TFF(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── Ternary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── TwoBDiver(pypynum.Logic.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TwoBMuler(pypynum.Logic.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── Unary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── XNOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   └── XOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   └── FUNCTION
│       └── connector(previous: Any, latter: Any) -> Any
├── Matrix
│   ├── CLASS
│   │   └── Matrix(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── cholesky(matrix: Any, hermitian: Any) -> Any
│       ├── eigen(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── hessenberg(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── identity(n: int) -> pypynum.Matrix.Matrix
│       ├── lu(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── mat(data: Any) -> Any
│       ├── qr(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── rank_decomp(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── rotate90(matrix: pypynum.Matrix.Matrix, times: int) -> pypynum.Matrix.Matrix
│       ├── svd(matrix: pypynum.Matrix.Matrix) -> tuple
│       └── tril_indices(n: int, k: int, m: int) -> tuple
├── NeuralN
│   ├── CLASS
│   │   └── NeuralNetwork(object)/__init__(self: Any, _input: Any, _hidden: Any, _output: Any) -> Any
│   └── FUNCTION
│       └── neuraln(_input: Any, _hidden: Any, _output: Any) -> Any
├── Quaternion
│   ├── CLASS
│   │   ├── Euler(object)/__init__(self: Any, y: typing.Union[int, float], p: typing.Union[int, float], r: typing.Union[int, float]) -> Any
│   │   └── Quaternion(object)/__init__(self: Any, w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any
│   └── FUNCTION
│       ├── change(data: typing.Union[pypynum.Quaternion.Quaternion, pypynum.Matrix.Matrix, pypynum.Quaternion.Euler], to: str) -> typing.Union[pypynum.Quaternion.Quaternion, pypynum.Matrix.Matrix, pypynum.Quaternion.Euler]
│       ├── euler(yaw: typing.Union[int, float], pitch: typing.Union[int, float], roll: typing.Union[int, float]) -> pypynum.Quaternion.Euler
│       └── quat(w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.Quaternion.Quaternion
├── Symbolics
│   ├── CLASS
│   └── FUNCTION
│       └── parse_expr(expr: str) -> list
├── Tensor
│   ├── CLASS
│   │   └── Tensor(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── ten(data: list) -> pypynum.Tensor.Tensor
│       ├── tensor_and_number(tensor: Any, operator: Any, number: Any) -> Any
│       ├── tensorproduct(tensors: pypynum.Tensor.Tensor) -> pypynum.Tensor.Tensor
│       ├── zeros(_dimensions: Any) -> Any
│       └── zeros_like(_nested_list: Any) -> Any
├── Tree
│   ├── CLASS
│   │   ├── MultiTree(object)/__init__(self: Any, root: Any) -> Any
│   │   └── MultiTreeNode(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
├── Vector
│   ├── CLASS
│   │   └── Vector(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       └── vec(data: Any) -> Any
├── chars
│   ├── CLASS
│   └── FUNCTION
│       ├── int2subscript(standard_str: str) -> str
│       ├── int2superscript(standard_str: str) -> str
│       ├── subscript2int(subscript_str: str) -> str
│       └── superscript2int(superscript_str: str) -> str
├── cipher
│   ├── CLASS
│   └── FUNCTION
│       ├── atbash(text: str) -> str
│       ├── base_64(text: str, decrypt: bool) -> str
│       ├── caesar(text: str, shift: int, decrypt: bool) -> str
│       ├── hill256(text: bytes, key: list, decrypt: bool) -> bytes
│       ├── ksa(key: bytes) -> list
│       ├── morse(text: str, decrypt: bool) -> str
│       ├── playfair(text: str, key: str, decrypt: bool) -> str
│       ├── prga(s: list) -> Any
│       ├── rc4(text: bytes, key: bytes) -> bytes
│       ├── rot13(text: str) -> str
│       ├── substitution(text: str, sub_map: dict, decrypt: bool) -> str
│       └── vigenere(text: str, key: str, decrypt: bool) -> str
├── confs
│   ├── CLASS
│   └── FUNCTION
├── constants
│   ├── CLASS
│   └── FUNCTION
├── dists
│   ├── CLASS
│   └── FUNCTION
│       ├── beta_pdf(x: Any, a: Any, b: Any) -> Any
│       ├── binom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── cauchy_cdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── cauchy_pdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── chi2_cdf(x: Any, df: Any) -> Any
│       ├── chi2_pdf(x: Any, df: Any) -> Any
│       ├── expon_cdf(x: Any, scale: Any) -> Any
│       ├── expon_pdf(x: Any, scale: Any) -> Any
│       ├── f_pdf(x: Any, dfnum: Any, dfden: Any) -> Any
│       ├── gamma_pdf(x: Any, shape: Any, scale: Any) -> Any
│       ├── geometric_pmf(k: Any, p: Any) -> Any
│       ├── hypergeom_pmf(k: Any, mg: Any, n: Any, nt: Any) -> Any
│       ├── inv_gauss_pdf(x: Any, mu: Any, lambda_: Any, alpha: Any) -> Any
│       ├── levy_pdf(x: Any, c: Any) -> Any
│       ├── log_logistic_cdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── log_logistic_pdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── logistic_cdf(x: Any, mu: Any, s: Any) -> Any
│       ├── logistic_pdf(x: Any, mu: Any, s: Any) -> Any
│       ├── lognorm_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── lognorm_pdf(x: Any, s: Any, scale: Any) -> Any
│       ├── logser_pmf(k: Any, p: Any) -> Any
│       ├── multinomial_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nbinom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nhypergeom_pmf(k: Any, m: Any, n: Any, r: Any) -> Any
│       ├── normal_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── normal_pdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── pareto_pdf(x: Any, k: Any, m: Any) -> Any
│       ├── poisson_pmf(k: Any, mu: Any) -> Any
│       ├── rayleigh_pdf(x: Any, sigma: Any) -> Any
│       ├── t_pdf(x: Any, df: Any) -> Any
│       ├── uniform_cdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── uniform_pdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── vonmises_pdf(x: Any, mu: Any, kappa: Any) -> Any
│       ├── weibull_max_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       ├── weibull_min_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       └── zipf_pmf(k: Any, s: Any, n: Any) -> Any
├── equations
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_eq(left: list, right: list) -> list
│       └── poly_eq(coefficients: list) -> list
├── errors
│   ├── CLASS
│   └── FUNCTION
├── file
│   ├── CLASS
│   └── FUNCTION
│       ├── read(file: str) -> list
│       └── write(file: str, cls: object) -> Any
├── highprec
│   ├── CLASS
│   └── FUNCTION
│       ├── calc_e(digits: int, method: str) -> decimal.Decimal
│       ├── calc_phi(digits: int, method: str) -> decimal.Decimal
│       └── calc_pi(digits: int, method: str) -> decimal.Decimal
├── image
│   ├── CLASS
│   │   └── PNG(object)/__init__(self: Any) -> None
│   └── FUNCTION
│       └── crc(data: Any, length: Any, init: Any, xor: Any) -> Any
├── maths
│   ├── CLASS
│   └── FUNCTION
│       ├── arrangement(n: int, r: int) -> int
│       ├── combination(n: int, r: int) -> int
│       ├── acos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acoth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── arrangement(n: int, r: int) -> int
│       ├── asec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── average(data: Any, weights: Any, expected: Any) -> Any
│       ├── bessel_i0(x: Any) -> Any
│       ├── bessel_iv(v: Any, x: Any) -> Any
│       ├── beta(p: typing.Union[int, float], q: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── central_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── coeff_det(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── combination(n: int, r: int) -> int
│       ├── corr_coeff(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── cos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── coth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cov(x: typing.Union[list, tuple], y: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── crt(n: typing.Union[list, tuple], a: typing.Union[list, tuple]) -> int
│       ├── csc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── csch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cumprod(lst: typing.Union[list, tuple]) -> list
│       ├── cumsum(lst: typing.Union[list, tuple]) -> list
│       ├── deriv(f: Any, x: typing.Union[int, float], h: typing.Union[int, float], args: Any, kwargs: Any) -> float
│       ├── erf(x: typing.Union[int, float]) -> float
│       ├── exgcd(a: int, b: int) -> tuple
│       ├── exp(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── factorial(n: int) -> int
│       ├── freq(data: typing.Union[list, tuple]) -> dict
│       ├── gamma(alpha: typing.Union[int, float]) -> float
│       ├── gcd(args: int) -> int
│       ├── geom_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── harm_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── integ(f: Any, x_start: typing.Union[int, float], x_end: typing.Union[int, float], n: int, args: Any, kwargs: Any) -> float
│       ├── iroot(y: int, n: int) -> int
│       ├── is_possibly_square(n: int) -> bool
│       ├── is_square(n: int) -> bool
│       ├── isqrt(x: int) -> int
│       ├── kurt(data: typing.Union[list, tuple], fisher: bool) -> float
│       ├── lcm(args: int) -> int
│       ├── ln(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── lower_gamma(s: Any, x: Any) -> Any
│       ├── mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── median(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── mod_order(a: int, n: int, b: int) -> int
│       ├── mode(data: typing.Union[list, tuple]) -> Any
│       ├── normalize(data: typing.Union[list, tuple], target: typing.Union[int, float, complex]) -> typing.Union[list, tuple]
│       ├── parity(x: int) -> int
│       ├── pi(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── primitive_root(a: int, single: bool) -> typing.Union[int, list]
│       ├── product(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── ptp(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── raw_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── roll(seq: typing.Union[list, tuple, str], shift: int) -> typing.Union[list, tuple, str]
│       ├── root(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sigma(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── sigmoid(x: typing.Union[int, float]) -> float
│       ├── sign(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── skew(data: typing.Union[list, tuple]) -> float
│       ├── square_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── std(numbers: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── sumprod(arrays: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── tan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── tanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── totient(n: int) -> int
│       ├── upper_gamma(s: Any, x: Any) -> Any
│       ├── var(numbers: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── xlogy(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       └── zeta(alpha: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
├── numbers
│   ├── CLASS
│   └── FUNCTION
│       ├── float2fraction(number: float, mixed: bool, error: float) -> tuple
│       ├── int2roman(integer: int, overline: bool) -> str
│       ├── int2words(integer: int) -> str
│       ├── roman2int(roman_num: str) -> int
│       └── str2int(string: str) -> int
├── plotting
│   ├── CLASS
│   └── FUNCTION
│       ├── background(right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool) -> typing.Union[list, str]
│       ├── binary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], error: Any, compare: Any, string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── c_unary(function: Any, projection: str, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── change(data: typing.Union[list, str]) -> typing.Union[list, str]
│       ├── color(text: str, rgb: typing.Union[list, tuple]) -> str
│       └── unary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
├── polynomial
│   ├── CLASS
│   │   └── Polynomial(object)/__init__(self: Any, terms: Any) -> Any
│   └── FUNCTION
│       ├── from_coeffs(coeffs: Any) -> Any
│       ├── from_coords(coords: Any) -> Any
│       ├── leggauss(polynomial: Any) -> Any
│       ├── legpoly(n: Any) -> Any
│       └── poly(terms: Any) -> Any
├── pprinters
│   ├── CLASS
│   └── FUNCTION
│       └── pprint_matrix(matrix: Any, style: Any, output: Any) -> Any
├── random
│   ├── CLASS
│   └── FUNCTION
│       ├── __create_nested_list(dimensions: Any, func: Any) -> Any
│       ├── __validate_shape(shape: Any) -> Any
│       ├── choice(seq: typing.Union[list, tuple, str], shape: typing.Union[list, tuple]) -> Any
│       ├── gauss(mu: typing.Union[int, float], sigma: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── rand(shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── randint(a: int, b: int, shape: typing.Union[list, tuple]) -> typing.Union[int, list]
│       └── uniform(a: typing.Union[int, float], b: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
├── regression
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       ├── par_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       └── poly_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple], n: int) -> list
├── sequence
│   ├── CLASS
│   └── FUNCTION
│       ├── arithmetic_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], d: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       ├── bernoulli(n: int, single: bool) -> list
│       ├── catalan(n: int, single: bool) -> typing.Union[int, list]
│       ├── farey(n: int) -> list
│       ├── fibonacci(n: int, single: bool) -> typing.Union[int, list]
│       ├── geometric_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], r: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       └── recaman(n: int, single: bool) -> typing.Union[int, list]
├── stattest
│   ├── CLASS
│   └── FUNCTION
│       ├── chi2_cont(contingency: list, lambda_: float, calc_p: bool, corr: bool) -> tuple
│       ├── chisquare(observed: list, expected: list) -> tuple
│       ├── kurttest(data: list, two_tailed: bool) -> tuple
│       ├── mediantest(samples: Any, ties: Any, lambda_: Any, corr: Any) -> Any
│       ├── normaltest(data: list) -> tuple
│       └── skewtest(data: list, two_tailed: bool) -> tuple
├── test
│   ├── CLASS
│   └── FUNCTION
├── this
│   ├── CLASS
│   └── FUNCTION
├── tools
│   ├── CLASS
│   └── FUNCTION
│       ├── classify(array: typing.Union[list, tuple]) -> dict
│       ├── dedup(iterable: typing.Union[list, tuple, str]) -> typing.Union[list, tuple, str]
│       ├── frange(start: typing.Union[int, float], stop: typing.Union[int, float], step: float) -> list
│       ├── generate_primes(limit: int) -> list
│       ├── generate_semiprimes(limit: int) -> list
│       ├── geomspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── interp(data: typing.Union[list, tuple], length: int) -> list
│       ├── linspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── magic_square(n: Any) -> Any
│       ├── primality(n: int, iter_num: int) -> bool
│       ├── prime_factors(integer: int, dictionary: bool, pollard_rho: bool) -> typing.Union[list, dict]
│       └── split(iterable: typing.Union[list, tuple, str], key: typing.Union[list, tuple], retain: bool) -> list
├── types
│   ├── CLASS
│   └── FUNCTION
├── ufuncs
│   ├── CLASS
│   └── FUNCTION
│       ├── add(x: Any, y: Any) -> Any
│       ├── base_ufunc(arrays: Any, func: Any, args: Any, rtype: Any) -> Any
│       ├── divide(x: Any, y: Any) -> Any
│       ├── floor_divide(x: Any, y: Any) -> Any
│       ├── modulo(x: Any, y: Any) -> Any
│       ├── multiply(x: Any, y: Any) -> Any
│       ├── power(x: Any, y: Any, m: Any) -> Any
│       ├── subtract(x: Any, y: Any) -> Any
│       └── ufunc_helper(x: Any, y: Any, func: Any) -> Any
└── utils
    ├── CLASS
    │   ├── InfIterator(object)/__init__(self: Any, start: typing.Union[int, float, complex], mode: str, common: typing.Union[int, float, complex]) -> Any
    │   ├── IntervalSet(object)/__init__(self: Any, intervals: Any) -> Any
    │   ├── LinkedList(object)/__init__(self: Any) -> Any
    │   ├── LinkedListNode(object)/__init__(self: Any, value: Any, next_node: Any) -> Any
    │   └── OrderedSet(object)/__init__(self: Any, sequence: Any) -> Any
    └── FUNCTION

代码测试

Code testing

from pypynum import (Array, Geometry, Logic, Matrix, Quaternion, Symbolics, Tensor, Vector,
                     cipher, constants, equations, maths, plotting, random, regression, tools)

...

print(Array.array())
print(Array.array([1, 2, 3, 4, 5, 6, 7, 8]))
print(Array.array([[1, 2, 3, 4], [5, 6, 7, 8]]))
print(Array.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))

"""
[]
[1 2 3 4 5 6 7 8]
[[1 2 3 4]
 [5 6 7 8]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
"""

triangle = Geometry.Triangle((0, 0), (2, 2), (3, 0))
print(triangle.perimeter())
print(triangle.area())
print(triangle.centroid())

"""
8.06449510224598
3.0
(1.6666666666666667, 0.6666666666666666)
"""

a, b, c = 1, 1, 1
adder0, adder1 = Logic.HalfAdder("alpha", a, b), Logic.HalfAdder("beta", c, None)
xor0 = Logic.XOR("alpha")
ff0, ff1 = Logic.DFF("alpha"), Logic.DFF("beta")
xor0.set_order0(1)
xor0.set_order1(1)
Logic.connector(adder0, adder1)
Logic.connector(adder0, xor0)
Logic.connector(adder1, xor0)
Logic.connector(adder1, ff0)
Logic.connector(xor0, ff1)
print("sum: {}, carry: {}".format(ff0.out(), ff1.out()))

"""
sum: [1], carry: [1]
"""

m0 = Matrix.mat([[1, 2], [3, 4]])
m1 = Matrix.mat([[5, 6], [7, 8]])
print(m0)
print(m1)
print(m0 + m1)
print(m0 @ m1)
print(m0.inv())
print(m1.rank())

"""
[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 6  8]
 [10 12]]
[[19 22]
 [43 50]]
[[ -1.9999999999999996   0.9999999999999998]
 [  1.4999999999999998 -0.49999999999999994]]
2
"""

q0 = Quaternion.quat(1, 2, 3, 4)
q1 = Quaternion.quat(5, 6, 7, 8)
print(q0)
print(q1)
print(q0 + q1)
print(q0 * q1)
print(q0.inverse())
print(q1.conjugate())

"""
(1+2i+3j+4k)
(5+6i+7j+8k)
(6+8i+10j+12k)
(-60+12i+30j+24k)
(0.18257418583505536+-0.3651483716701107i+-0.5477225575051661j+-0.7302967433402214k)
(5+-6i+-7j+-8k)
"""

print(Symbolics.BASIC)
print(Symbolics.ENGLISH)
print(Symbolics.GREEK)
print(Symbolics.parse_expr("-(10+a-(3.14+b0)*(-5))**(-ζn1-2.718/mΣ99)//9"))

"""
%()*+-./0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩαβγδεζηθικλμνξοπρστυφχψω
[['10', '+', 'a', '-', ['3.14', '+', 'b0'], '*', '-5'], '**', ['-ζn1', '-', '2.718', '/', 'mΣ99'], '//', '9']
"""

t0 = Tensor.ten([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
t1 = Tensor.ten([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
print(t0)
print(t1)
print(t0 + t1)
print(t0 @ t1)

"""
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
[[[ 9 10]
  [11 12]]

 [[13 14]
  [15 16]]]
[[[10 12]
  [14 16]]

 [[18 20]
  [22 24]]]
[[[ 31  34]
  [ 71  78]]

 [[155 166]
  [211 226]]]
"""

string = "PyPyNum"
encrypted = cipher.caesar(string, 10)
print(string)
print(encrypted)
print(cipher.caesar(encrypted, 10, decrypt=True))
encrypted = cipher.vigenere(string, "cipher")
print(string)
print(encrypted)
print(cipher.vigenere(encrypted, "cipher", decrypt=True))
encrypted = cipher.morse(string)
print(string)
print(encrypted)
print(cipher.morse(encrypted, decrypt=True))

"""
PyPyNum
ZiZiXew
PyPyNum
PyPyNum
RgEfRlo
PyPyNum
PyPyNum
.--. -.-- .--. -.-- -. ..- --
PYPYNUM
"""

v0 = Vector.vec([1, 2, 3, 4])
v1 = Vector.vec([5, 6, 7, 8])
print(v0)
print(v1)
print(v0 + v1)
print(v0 @ v1)
print(v0.normalize())
print(v1.angles())

"""
[1 2 3 4]
[5 6 7 8]
[ 5 12 21 32]
70
[0.18257418583505536  0.3651483716701107  0.5477225575051661  0.7302967433402214]
[1.1820279130506308, 1.0985826410133916, 1.0114070854293842, 0.9191723423169716]
"""

print(constants.TB)
print(constants.e)
print(constants.h)
print(constants.phi)
print(constants.pi)
print(constants.tera)

"""
1099511627776
2.718281828459045
6.62607015e-34
1.618033988749895
3.141592653589793
1000000000000
"""

p = [1, -2, -3, 4]
m = [
    [
        [1, 2, 3],
        [6, 10, 12],
        [7, 16, 9]
    ],
    [-1, -2, -3]
]
print(equations.poly_eq(p))
print(equations.lin_eq(*m))

"""
[(-1.5615528128088307-6.5209667308287455e-24j)   (1.0000000000000007+3.241554513744382e-25j)   (2.5615528128088294+4.456233626665941e-24j)]
[ 1.6666666666666667 -0.6666666666666666 -0.4444444444444444]
"""

print(maths.cot(constants.pi / 3))
print(maths.gamma(1.5))
print(maths.pi(1, 10, lambda x: x ** 2))
print(maths.product([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))
print(maths.sigma(1, 10, lambda x: x ** 2))
print(maths.var([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))

"""
0.577350269189626
0.886226925452758
13168189440000
6469693230
385
73.29
"""

plt = plotting.unary(lambda x: x ** 2, top=10, bottom=0, character="+")
print(plt)
print(plotting.binary(lambda x, y: x ** 2 + y ** 2 - 10, right=10, left=0, compare="<=", basic=plotting.change(plt)))
print(plotting.c_unary(lambda x: x ** x, right=2, left=-2, top=2, bottom=-2, complexity=20, character="-"))

"""
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |           +                           +           
          |            +                         +            
          |                                                   
          |             +                       +             
  5.00e+00|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |              +                     +              
          |               +                   +               
          |                +                 +                
          |                 +               +                 
          |                  +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |.........  +                           +           
          |.............                         +            
          |..............                                     
          |................                     +             
  5.00e+00|................_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |................                    +              
          |................                   +               
          |..............  +                 +                
          |.............    +               +                 
          |.........         +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  2.00e+00|           -                 -           -          -          -            -    
          |               -  -            -          -         -         -           -      
          |                     -           -         -        -        -          -        
          |-                       -          -       -       -        -         -          
          |     -   -                - -       --      -      -       -        -            
          |            -  -              -       -      -     -      -       -             -
          |                  -  - -       - --  - ---  -- -  --     -     - -         - -   
          |                         - -   -  --    --    -   -  - --     -       - -        
          |  -   -  - - -  -          - -- -   ---  ---  -   -   ---   --     - -           
          |             -    -  - - - --    ----- -- -- --- --  --  ---    --           -  -
          |               - -      -     ------------ ----  - --  -- - ---       - - -      
          |    -  -  -  - -  ----- - -- ----------------------- -- ----  - -- --            
          |   -  -   - -         - ---- ---------------------------------      - - - - -  - 
  0.00e+00|_ _ _ _ _ _ _ _-_-_-_-_---- ------------------------------------_-- _ _ _ _ _ _ _
          |            -  -   - - ----------------------------------------- -- - - - -      
          |   -  --  -  -       -- -  -  --------------------------------- -           -  - 
          |    -          - ---- - - -- --------------------- ----- ----    - -- -          
          |               -         - -- --------- -- -- -  -----  ---  -- -       - -  -   
          |             -  - -  - - - -    ---- --- --- --- --  --  ---     - -            -
          |  -   -  - -               - --     --   --   -   -    --   --       --          
          |                       - -     -  --    -    --   -- -  -     --        -  -     
          |                  -  -         - -   - - -  -- -   -     --      -           -   
          |            -  -            - -      --     --     -      -       - -           -
          |     -   -                -         -       -      -       -          -          
          |-                    -  -          -       -        -       -           -        
          |                  -              -         -        -        -            -      
          |               -               -          -         -         -                  
 -2.00e+00|___________-_________________-___________-_____________________-____________-____
           -2.00e+00                            0.00e+00                            2.00e+00
"""

print(random.gauss(0, 1, [2, 3, 4]))
print(random.rand([2, 3, 4]))
print(random.randint(0, 9, [2, 3, 4]))
print(random.uniform(0, 9, [2, 3, 4]))

"""
[[[1.0022026821190488, -0.38242004448759154, -0.23648445523561967, 0.43813038741951754], [-0.3778652198785619, -0.03865603124657112, -1.5186239424691736, -0.7368762975012327], [-0.7580654190380791, -1.3672869759158346, 0.582588816791107, 1.0281649895276377]], [[0.5270622699930536, 0.6132250709048543, 0.9764619731696673, -0.13740454362420268], [-2.0801461607759886, -0.1935521020633617, 0.44420106801354153, 1.4830089202063659], [-0.8790685594194517, 0.45517163054358967, -1.1448643981658326, 0.986414969442009]]]
[[[0.13698864758140294, 0.634190467772759, 0.25683276170297875, 0.9026812741081188], [0.26303437123782614, 0.02477620234532174, 0.9947822450199725, 0.5916822332583692], [0.7523977891797228, 0.6198410071512576, 0.05799276940261333, 0.4181042411131305]], [[0.21564211884049145, 0.30667940527138227, 0.03010277335333611, 0.904264028183912], [0.33977550248572597, 0.042594462434406455, 0.6371061749651907, 0.8639246364627866], [0.009159271907318911, 0.054475512265855563, 0.7109847662274855, 0.9695933487818381]]]
[[[1, 6, 0, 1], [0, 4, 8, 3], [2, 4, 2, 8]], [[9, 7, 0, 6], [6, 2, 4, 6], [2, 2, 0, 1]]]
[[[4.281963231653285, 7.6564706580977155, 2.7831005401808904, 4.69275453971821], [7.731377457312142, 7.026081604862776, 3.1623746844355916, 4.097454457127405], [1.0053860355938644, 8.396390096875859, 5.860124932392565, 0.7556741321519111]], [[3.0505373562186717, 5.846422325897977, 5.79128924014881, 5.322513543793011], [7.97334322055796, 0.4266873959996582, 6.217219949795519, 2.819046997201407], [7.195256735457888, 3.205909055908082, 2.9903485221015123, 6.695032815286013]]]
"""

print(regression.lin_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regression.par_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regression.poly_reg(list(range(5)), [2, 4, 6, 7, 8], 4))

"""
[1.5, 2.4000000000000004]
[-0.21428571428571563, 2.3571428571428625, 1.971428571428569]
[0.08333333333320592, -0.666666666666571, 1.4166666666628345, 1.1666666666688208, 1.9999999999999258]
"""

print(tools.classify([1, 2.3, 4 + 5j, "string", list, True, 3.14, False, tuple, tools]))
print(tools.dedup(["Python", 6, "NumPy", int, "PyPyNum", 9, "pypynum", "NumPy", 6, True]))
print(tools.frange(0, 3, 0.4))
print(tools.linspace(0, 2.8, 8))

"""
{<class 'int'>: [1], <class 'float'>: [2.3, 3.14], <class 'complex'>: [(4+5j)], <class 'str'>: ['string'], <class 'type'>: [<class 'list'>, <class 'tuple'>], <class 'bool'>: [True, False], <class 'module'>: [<module 'pypynum.tools' from 'C:\\Users\\Administrator\\PycharmProjects\\pythonProject\\pypynum\\tools.py'>]}
['Python', 6, 'NumPy', <class 'int'>, 'PyPyNum', 9, 'pypynum', True]
[0.0, 0.4, 0.8, 1.2000000000000002, 1.6, 2.0, 2.4000000000000004, 2.8000000000000003]
[0.0, 0.39999999999999997, 0.7999999999999999, 1.2, 1.5999999999999999, 1.9999999999999998, 2.4, 2.8]
"""

# 提示:
# 
# 测试已成功通过并结束。
# 
# 这些测试只是这个包功能的一部分。
# 
# 更多的功能需要自己探索和尝试!
# 
# Tip:
# 
# The test has been successfully passed and ended.
# 
# These tests are only part of the functionality of this package.
# 
# More features need to be explored and tried by yourself!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpypy-1.11.2.tar.gz (67.9 kB view details)

Uploaded Source

Built Distribution

numpypy-1.11.2-py3-none-any.whl (44.2 kB view details)

Uploaded Python 3

File details

Details for the file numpypy-1.11.2.tar.gz.

File metadata

  • Download URL: numpypy-1.11.2.tar.gz
  • Upload date:
  • Size: 67.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for numpypy-1.11.2.tar.gz
Algorithm Hash digest
SHA256 46fed4f1f0c55374ef2af81f7a18f851a039e4e3f080a3549cf84ceea943c8cf
MD5 bcd1b6bff6d482d07877f5ed83515d31
BLAKE2b-256 3d29e0a12b814130f762cad093d32747943f4b12e245f5a8dbfda75da0dc3731

See more details on using hashes here.

File details

Details for the file numpypy-1.11.2-py3-none-any.whl.

File metadata

  • Download URL: numpypy-1.11.2-py3-none-any.whl
  • Upload date:
  • Size: 44.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for numpypy-1.11.2-py3-none-any.whl
Algorithm Hash digest
SHA256 fee791e921f3dfc0da5726de1c2160accbfa53e6feec66d1d402d0ec3b8302e2
MD5 ae4201a256238fdb90dafaa70d81003e
BLAKE2b-256 b11f3495233ffccb2379c4dd7c965ab748efc3ad9f3e2d31c5c56b33b32d85a8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page