Skip to main content

(It is an alias for PyPyNum) PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.

Project description

PyPyNum

PyPyNum is a Python library for math & science computations, covering algebra, calculus, stats, with data structures like matrices, vectors, tensors. It offers numerical tools, programs, and supports computational ops, functions, processing, simulation, & visualization in data science & ML, crucial for research, engineering, & data processing.[Python>=3.4]

 ________   ___    ___  ________   ___    ___  ________    ___  ___   _____ ______
|\   __  \ |\  \  /  /||\   __  \ |\  \  /  /||\   ___  \ |\  \|\  \ |\   _ \  _   \
\ \  \|\  \\ \  \/  / /\ \  \|\  \\ \  \/  / /\ \  \\ \  \\ \  \\\  \\ \  \\\__\ \  \
 \ \   ____\\ \    / /  \ \   ____\\ \    / /  \ \  \\ \  \\ \  \\\  \\ \  \\|__| \  \
  \ \  \___| \/  /  /    \ \  \___| \/  /  /    \ \  \\ \  \\ \  \\\  \\ \  \    \ \  \
   \ \__\  __/  / /       \ \__\  __/  / /       \ \__\\ \__\\ \_______\\ \__\    \ \__\
    \|__| |\___/ /         \|__| |\___/ /         \|__| \|__| \|_______| \|__|     \|__|
          \|___|/                \|___|/

Downloads Downloads Downloads

Version -> 1.12.0 | PyPI -> https://pypi.org/project/PyPyNum/ | Gitee -> https://www.gitee.com/PythonSJL/PyPyNum | GitHub -> https://github.com/PythonSJL/PyPyNum

LOGO

PyPI上无法显示logo,可以在Gitee或者GitHub中查看。

The logo cannot be displayed on PyPI, it can be viewed in Gitee or GitHub.

介绍

Introduction

  • 多功能数学库,类似于numpy、scipy等,专为PyPy解释器制作,亦支持其他类型的Python解释器
  • Multi functional math library, similar to numpy, scipy, etc., designed specifically for PyPy interpreters and also supports other types of Python interpreters
  • 不定期更新版本,增加更多实用功能
  • Update versions periodically to add more practical features
  • 如需联系,请添加QQ号2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)
  • If you need to contact, please add QQ number 2261748025 (Py𝙿𝚢𝚝𝚑𝚘𝚗-水晶兰)

子模块的名称与功能简介

Name and Function Introduction of Submodules

子模块名称 Submodule Name 功能简介 Function Introduction
pypynum.Array 多维数组 Multidimensional array
pypynum.chars 特殊数学符号 Special mathematical symbols
pypynum.cipher 加密解密算法 Encryption and decryption algorithm
pypynum.confs 通用配置 Universal configuration
pypynum.constants 数学常数集合 Set of mathematical constants
pypynum.dists 概率分布 Probability distribution
pypynum.equations 方程求解 Solving equations
pypynum.errors 异常对象 Exception object
pypynum.file 文件读写 File read and write
pypynum.FourierT 傅里叶变换 Fourier transform
pypynum.Geometry 几何形状 Geometric shape
pypynum.Graph 图论算法 Graph Theory Algorithm
pypynum.Group 群论算法 Group Theory Algorithm
pypynum.image 图像处理 Image processing
pypynum.Logic 逻辑电路设计 Logic circuit design
pypynum.maths 通用数学函数 General mathematical functions
pypynum.Matrix 矩阵运算 Matrix operation
pypynum.multiprec 多精度计算 Multi precision calculation
pypynum.NeuralN 神经网络训练 Neural network training
pypynum.numbers 数字处理 Number processing
pypynum.plotting 数据可视化 Data visualization
pypynum.polynomial 多项式运算 Polynomial operation
pypynum.pprinters 美化打印 Pretty printers
pypynum.Quaternion 四元数运算 Quaternion operation
pypynum.random 随机数生成 Random number generation
pypynum.regression 回归分析 Regression analysis
pypynum.sequence 数列计算 Sequence calculation
pypynum.stattest 统计检验 Statistical test
pypynum.Symbolics 符号计算 Symbol calculation
pypynum.Tensor 张量运算 Tensor operation
pypynum.test 简易测试 Easy test
pypynum.this 项目之禅 Zen of Projects
pypynum.tools 辅助函数 Auxiliary functions
pypynum.Tree 树形数据结构 Tree data structure
pypynum.types 特殊类型 Special types
pypynum.ufuncs 通用函数 Universal functions
pypynum.utils 实用工具 Utility
pypynum.Vector 向量运算 Vector operation
pypynum.zh_cn 中文名的函数 Functions with Chinese names

PyPyNum的Zen(预览)

The Zen of PyPyNum (Preview)

    The Zen of PyPyNum, by Shen Jiayi

This is a math package written purely in Python.

Elegant is superior to clunky.
Clarity trumps obscurity.
Straightforwardness is preferred over convolution.
Sophisticated is better than overcomplicated.
Flat structure beats nested hierarchies.
Sparse code wins over bloated ones.
...

Do you want to view all the content?

Enter "from pypynum import this" in your

Python interpreter and run it!
                                        February 27, 2024

与上一个版本相比功能变化

Functional changes compared to the previous version

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

添加了zh_cn模块,
其中包括一些用中文名称封装的函数,
并将继续补充未封装的函数。

Added zh_cn module, 
which includes some functions encapsulated with Chinese names, 
and will continue to supplement unencapsulated functions.

以下是当前已经过中文名称封装的函数:

The following are the functions that have already been encapsulated with Chinese names:

["Fraction转为Decimal", "RC4伪随机生成算法", "RC4初始化密钥调度算法", "RC4密码", "ROT13密码", "S型函数", "base64密码",
 "x对数y乘积", "y次方根", "一维傅里叶变换", "上伽玛", "上标转整数", "下伽玛", "下标转整数", "中位数", "中国剩余定理",
 "中心矩", "乘积和", "代替密码", "众数", "伽玛函数", "余切", "余割", "余弦", "偏度", "全一", "全部填充", "全零", "写入",
 "几何平均数", "凯撒密码", "判定系数", "判断平方数", "加权平均", "协方差", "原根", "原点矩", "双曲余切", "双曲余割",
 "双曲余弦", "双曲正切", "双曲正割", "双曲正弦", "反余切", "反余割", "反余弦", "反双曲余切", "反双曲余割", "反双曲余弦",
 "反双曲正切", "反双曲正割", "反双曲正弦", "反正切", "反正割", "反正弦", "可能是平方数", "填充序列", "多次方根取整",
 "多精度余弦", "多精度圆周率", "多精度对数", "多精度欧拉数", "多精度正弦", "多精度自然对数", "多精度黄金分割率",
 "多项式方程", "导数", "峰度", "希尔256密码", "平均数", "平方平均数", "平方根取整", "序列滚动", "归一化",
 "扩展欧几里得算法", "排列数", "数组", "整数转上标", "整数转下标", "方差", "普莱费尔密码", "最大公约数", "最小公倍数",
 "极差", "标准差", "模运算阶", "欧拉函数", "正切", "正割", "正弦", "相关系数", "积分", "积累乘积", "符号函数",
 "类似形状全一", "类似形状全零", "类似形状填充", "累乘积", "累加和", "线性方程组", "组合数", "维吉尼亚密码", "自然对数",
 "自然指数", "莫尔斯密码", "误差函数", "读取", "调和平均数", "贝塔函数", "贝塞尔I0", "贝塞尔Iv", "负一整数次幂",
 "转换为列表", "转换为数组", "连续乘积", "连续加和", "阶乘函数", "阿特巴什密码", "频率统计", "黎曼函数"]

(120 functions)

下面是一个使用示例

Here is an example of usage

>>> from pypynum import zh_cn
>>> print(zh_cn.多精度正弦(1, 100))
0.8414709848078965066525023216302989996225630607983710656727517099919104043912396689486397435430526959

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

Group类修复了原有方法的问题并且新增了
一些方法。

The Group class has fixed the
issues with the original methods
and added some new methods.


下面是新增的方法(Monoid是幺半群):

Here are the newly added methods:


elements(self)
getop(self)
identity(self)
is_monoid(self, modulus=None)
is_subgroup(self, other, modulus=None)
is_supergroup(self, other, modulus=None)
setop(self, operation)

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

"Polynomial"类增加了五个寻找特殊点的方法,下面是这五个方法。

The "Polynomial" class has added five methods for finding special points. 
Here are these five methods.


1. `stationaries(self, tolerance=1e-15)`:

计算多项式的**驻点**,即一阶导数等于零的点。
驻点可能是局部极大值、局部极小值或鞍点。

Calculate the stationary point of a polynomial, 
which is the point where the first derivative equals zero. 
The stationary point may be a local maximum, 
local minimum, 
or saddle point.


2. `saddles(self, tolerance=1e-15)`:

计算多项式的**鞍点**。
鞍点是驻点,其一阶导数在该点为零,而二阶导数在该点不为零且一阶导数与二阶导数的符号相反。

Calculate the saddle point of a polynomial. 
The saddle point is a stationary point, 
where its first derivative is zero and its second derivative is non-zero, 
and the signs of the first and second derivatives are opposite.


3. `minima(self, tolerance=1e-15)`:

计算多项式的**局部极小值点**。
局部极小值点是驻点,其二阶导数在该点大于零。

Calculate the local minimum points of a polynomial. 
The local minimum point is a stationary point, 
and its second derivative is greater than zero at that point.


4. `maxima(self, tolerance=1e-15)`:

计算多项式的**局部极大值点**。
局部极大值点是驻点,其二阶导数在该点小于零。

Calculate the local maximum points of a polynomial. 
The local maximum point is a stationary point, 
and its second derivative is less than zero at that point.


5. `inflections(self, tolerance=1e-15)`:

计算多项式的**拐点**。
拐点是二阶导数等于零的点,并且三阶导数在该点不为零,表示函数在该点改变其凹凸性。

Calculate the inflection point of a polynomial. 
The inflection point is the point where the second derivative equals zero, 
and the third derivative is not zero at that point, 
indicating that the function changes its concavity and convexity at that point.


每个方法都使用了`tolerance`参数来确定计算过程中可接受的误差范围。
例如,在判断导数是否为零或者是否大于/小于零时,都会考虑到这个容差值。

Each method uses the 'tolerance' parameter to determine the acceptable range of error during the calculation process. 
For example, 
when determining whether the derivative is zero or greater/less than zero, 
this tolerance value will be taken into account.

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

highprec模块改名为multiprec,
然后重命名和新增了几个函数。

The highprec module was renamed as multiparec, 
and several functions were renamed and added.

frac2dec(frac: fractions.Fraction, sigfigs: int) -> decimal.Decimal
mp_cos(x: Union[int, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
mp_e(sigfigs: int, method: str = 'series') -> decimal.Decimal
mp_ln(x: Union[int, str, decimal.Decimal], sigfigs: int, builtin: bool = True) -> decimal.Decimal
mp_log(x: Union[int, str, decimal.Decimal], base: Union[int, str, decimal.Decimal], sigfigs: int, builtin: bool = True) -> decimal.Decimal
mp_phi(sigfigs: int, method: str = 'algebraic') -> decimal.Decimal
mp_pi(sigfigs: int, method: str = 'chudnovsky') -> decimal.Decimal
mp_sin(x: Union[int, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal

!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=

运行用时测试

Run Time Test

Python解释器版本

Python interpreter version

  • CPython 3.8.10

  • PyPy 3.10.12

矩阵用时测试
Matrix Time Test
NumPy+CPython(seconds) 排名
Ranking
PyPyNum+PyPy(seconds) 排名
Ranking
Mpmath_+_PyPy_(_seconds_) 排名
Ranking
SymPy_+_PyPy_(_seconds_) 排名
Ranking
创建一百阶随机数矩阵
Create a hundred order random number matrix
0.000083 1 0.005374 2 0.075253 3 0.230530 4
创建一千阶随机数矩阵
Create a thousand order random number matrix
0.006740 1 0.035666 2 1.200950 3 4.370265 4
一百阶矩阵相加
Addition of matrices of order one hundred
0.000029 1 0.002163 2 0.045641 4 0.035700 3
一千阶矩阵相加
Adding matrices of order one thousand
0.002647 1 0.019111 2 1.746957 4 0.771542 3
一百阶矩阵行列式
Determinant of a hundred order matrix
0.087209 2 0.016331 1 4.354507 3 5.157206 4
一千阶矩阵行列式
Determinant of a thousand order matrix
0.616113 1 3.509747 2 It takes a long time 3 It takes a long time 4
一百阶矩阵求逆
Finding the inverse of a hundred order matrix
0.162770 2 0.015768 1 8.162948 3 21.437424 4
一千阶矩阵求逆
Finding the inverse of a thousand order matrix
0.598905 1 17.072552 2 It takes a long time 3 It takes a long time 4
数组输出效果
Array output effect
[[[[ -7 -67]
[-78  29]]

[[-86 -97]
[ 68  -3]]]


[[[ 11  42]
[ 24 -65]]

[[-60  72]
[ 73   2]]]]
/ [[[[ 37  83]
[ 40   2]]

[[ -5 -34]
[ -7  72]]]


[[[ 13 -64]
[  6  90]]

[[ 68  57]
[ 78  11]]]]
/ [-80.0   -8.0  80.0  -88.0]
[-99.0  -43.0  87.0   81.0]
[ 20.0  -55.0  98.0    8.0]
[  8.0   44.0  64.0  -35.0]
(只支持矩阵)
(Only supports matrices)
/ ⎡⎡16   -56⎤  ⎡ 8   -28⎤⎤
⎢⎢        ⎥  ⎢        ⎥⎥
⎢⎣-56  56 ⎦  ⎣-28  28 ⎦⎥
⎢                      ⎥
⎢ ⎡-2  7 ⎤   ⎡-18  63 ⎤⎥
⎢ ⎢      ⎥   ⎢        ⎥⎥
⎣ ⎣7   -7⎦   ⎣63   -63⎦⎦
/

基本结构

Basic structure

PyPyNum
├── Array
│   ├── CLASS
│   │   └── Array(object)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── array(data: Any) -> Any
│       ├── asarray(data: Any) -> Any
│       ├── aslist(data: Any) -> Any
│       ├── fill(shape: Any, sequence: Any, repeat: Any, pad: Any, rtype: Any) -> Any
│       ├── full(shape: Any, fill_value: Any, rtype: Any) -> Any
│       ├── full_like(a: Any, fill_value: Any, rtype: Any) -> Any
│       ├── get_shape(data: Any) -> Any
│       ├── is_valid_array(_array: Any, _shape: Any) -> Any
│       ├── ones(shape: Any, rtype: Any) -> Any
│       ├── ones_like(a: Any, rtype: Any) -> Any
│       ├── zeros(shape: Any, rtype: Any) -> Any
│       └── zeros_like(a: Any, rtype: Any) -> Any
├── FourierT
│   ├── CLASS
│   │   └── FT1D(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
├── Geometry
│   ├── CLASS
│   │   ├── Circle(object)/__init__(self: Any, center: typing.Union[list, tuple], radius: typing.Union[int, float]) -> Any
│   │   ├── Line(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple]) -> Any
│   │   ├── Point(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Polygon(object)/__init__(self: Any, p: typing.Union[list, tuple]) -> Any
│   │   ├── Quadrilateral(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple], d: typing.Union[list, tuple]) -> Any
│   │   └── Triangle(object)/__init__(self: Any, a: typing.Union[list, tuple], b: typing.Union[list, tuple], c: typing.Union[list, tuple]) -> Any
│   └── FUNCTION
│       └── distance(g1: Any, g2: Any, error: typing.Union[int, float]) -> float
├── Graph
│   ├── CLASS
│   │   ├── BaseGraph(object)/__init__(self: Any) -> Any
│   │   ├── BaseWeGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── DiGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── UnGraph(pypynum.Graph.BaseGraph)/__init__(self: Any) -> Any
│   │   ├── WeDiGraph(pypynum.Graph.BaseWeGraph)/__init__(self: Any) -> Any
│   │   └── WeUnGraph(pypynum.Graph.BaseWeGraph)/__init__(self: Any) -> Any
│   └── FUNCTION
├── Group
│   ├── CLASS
│   │   └── Group(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
│       └── group(data: Any) -> Any
├── Logic
│   ├── CLASS
│   │   ├── AND(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Basic(object)/__init__(self: Any, label: Any) -> Any
│   │   ├── Binary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── COMP(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── DFF(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── FullAdder(pypynum.Logic.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── FullSuber(pypynum.Logic.Ternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── HalfAdder(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── HalfSuber(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── JKFF(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, state: Any) -> Any
│   │   ├── NAND(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── NOT(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── OR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   ├── Quaternary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TFF(pypynum.Logic.Unary)/__init__(self: Any, label: Any, pin0: Any, state: Any) -> Any
│   │   ├── Ternary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any) -> Any
│   │   ├── TwoBDiver(pypynum.Logic.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── TwoBMuler(pypynum.Logic.Quaternary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any, pin2: Any, pin3: Any) -> Any
│   │   ├── Unary(pypynum.Logic.Basic)/__init__(self: Any, label: Any, pin0: Any) -> Any
│   │   ├── XNOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   │   └── XOR(pypynum.Logic.Binary)/__init__(self: Any, label: Any, pin0: Any, pin1: Any) -> Any
│   └── FUNCTION
│       └── connector(previous: Any, latter: Any) -> Any
├── Matrix
│   ├── CLASS
│   │   └── Matrix(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── cholesky(matrix: Any, hermitian: Any) -> Any
│       ├── eigen(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── hessenberg(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── identity(n: int) -> pypynum.Matrix.Matrix
│       ├── lu(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── mat(data: Any) -> Any
│       ├── qr(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── rank_decomp(matrix: pypynum.Matrix.Matrix) -> tuple
│       ├── rotate90(matrix: pypynum.Matrix.Matrix, times: int) -> pypynum.Matrix.Matrix
│       ├── svd(matrix: pypynum.Matrix.Matrix) -> tuple
│       └── tril_indices(n: int, k: int, m: int) -> tuple
├── NeuralN
│   ├── CLASS
│   │   └── NeuralNetwork(object)/__init__(self: Any, _input: Any, _hidden: Any, _output: Any) -> Any
│   └── FUNCTION
│       └── neuraln(_input: Any, _hidden: Any, _output: Any) -> Any
├── Quaternion
│   ├── CLASS
│   │   ├── Euler(object)/__init__(self: Any, y: typing.Union[int, float], p: typing.Union[int, float], r: typing.Union[int, float]) -> Any
│   │   └── Quaternion(object)/__init__(self: Any, w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> Any
│   └── FUNCTION
│       ├── change(data: typing.Union[pypynum.Quaternion.Quaternion, pypynum.Matrix.Matrix, pypynum.Quaternion.Euler], to: str) -> typing.Union[pypynum.Quaternion.Quaternion, pypynum.Matrix.Matrix, pypynum.Quaternion.Euler]
│       ├── euler(yaw: typing.Union[int, float], pitch: typing.Union[int, float], roll: typing.Union[int, float]) -> pypynum.Quaternion.Euler
│       └── quat(w: typing.Union[int, float], x: typing.Union[int, float], y: typing.Union[int, float], z: typing.Union[int, float]) -> pypynum.Quaternion.Quaternion
├── Symbolics
│   ├── CLASS
│   └── FUNCTION
│       └── parse_expr(expr: str) -> list
├── Tensor
│   ├── CLASS
│   │   └── Tensor(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       ├── ten(data: list) -> pypynum.Tensor.Tensor
│       ├── tensor_and_number(tensor: Any, operator: Any, number: Any) -> Any
│       ├── tensorproduct(tensors: pypynum.Tensor.Tensor) -> pypynum.Tensor.Tensor
│       ├── zeros(_dimensions: Any) -> Any
│       └── zeros_like(_nested_list: Any) -> Any
├── Tree
│   ├── CLASS
│   │   ├── MultiTree(object)/__init__(self: Any, root: Any) -> Any
│   │   └── MultiTreeNode(object)/__init__(self: Any, data: Any) -> Any
│   └── FUNCTION
├── Vector
│   ├── CLASS
│   │   └── Vector(pypynum.Array.Array)/__init__(self: Any, data: Any, check: Any) -> Any
│   └── FUNCTION
│       └── vec(data: Any) -> Any
├── chars
│   ├── CLASS
│   └── FUNCTION
│       ├── int2subscript(standard_str: str) -> str
│       ├── int2superscript(standard_str: str) -> str
│       ├── subscript2int(subscript_str: str) -> str
│       └── superscript2int(superscript_str: str) -> str
├── cipher
│   ├── CLASS
│   └── FUNCTION
│       ├── atbash(text: str) -> str
│       ├── base_64(text: str, decrypt: bool) -> str
│       ├── caesar(text: str, shift: int, decrypt: bool) -> str
│       ├── hill256(text: bytes, key: list, decrypt: bool) -> bytes
│       ├── ksa(key: bytes) -> list
│       ├── morse(text: str, decrypt: bool) -> str
│       ├── playfair(text: str, key: str, decrypt: bool) -> str
│       ├── prga(s: list) -> Any
│       ├── rc4(text: bytes, key: bytes) -> bytes
│       ├── rot13(text: str) -> str
│       ├── substitution(text: str, sub_map: dict, decrypt: bool) -> str
│       └── vigenere(text: str, key: str, decrypt: bool) -> str
├── confs
│   ├── CLASS
│   └── FUNCTION
├── constants
│   ├── CLASS
│   └── FUNCTION
├── dists
│   ├── CLASS
│   └── FUNCTION
│       ├── beta_pdf(x: Any, a: Any, b: Any) -> Any
│       ├── binom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── cauchy_cdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── cauchy_pdf(x: Any, x0: Any, gamma: Any) -> Any
│       ├── chi2_cdf(x: Any, df: Any) -> Any
│       ├── chi2_pdf(x: Any, df: Any) -> Any
│       ├── expon_cdf(x: Any, scale: Any) -> Any
│       ├── expon_pdf(x: Any, scale: Any) -> Any
│       ├── f_pdf(x: Any, dfnum: Any, dfden: Any) -> Any
│       ├── gamma_pdf(x: Any, shape: Any, scale: Any) -> Any
│       ├── geometric_pmf(k: Any, p: Any) -> Any
│       ├── hypergeom_pmf(k: Any, mg: Any, n: Any, nt: Any) -> Any
│       ├── inv_gauss_pdf(x: Any, mu: Any, lambda_: Any, alpha: Any) -> Any
│       ├── levy_pdf(x: Any, c: Any) -> Any
│       ├── log_logistic_cdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── log_logistic_pdf(x: Any, alpha: Any, beta: Any) -> Any
│       ├── logistic_cdf(x: Any, mu: Any, s: Any) -> Any
│       ├── logistic_pdf(x: Any, mu: Any, s: Any) -> Any
│       ├── lognorm_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── lognorm_pdf(x: Any, s: Any, scale: Any) -> Any
│       ├── logser_pmf(k: Any, p: Any) -> Any
│       ├── multinomial_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nbinom_pmf(k: Any, n: Any, p: Any) -> Any
│       ├── nhypergeom_pmf(k: Any, m: Any, n: Any, r: Any) -> Any
│       ├── normal_cdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── normal_pdf(x: Any, mu: Any, sigma: Any) -> Any
│       ├── pareto_pdf(x: Any, k: Any, m: Any) -> Any
│       ├── poisson_pmf(k: Any, mu: Any) -> Any
│       ├── rayleigh_pdf(x: Any, sigma: Any) -> Any
│       ├── t_pdf(x: Any, df: Any) -> Any
│       ├── uniform_cdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── uniform_pdf(x: Any, loc: Any, scale: Any) -> Any
│       ├── vonmises_pdf(x: Any, mu: Any, kappa: Any) -> Any
│       ├── weibull_max_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       ├── weibull_min_pdf(x: Any, c: Any, scale: Any, loc: Any) -> Any
│       └── zipf_pmf(k: Any, s: Any, n: Any) -> Any
├── equations
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_eq(left: list, right: list) -> list
│       └── poly_eq(coefficients: list) -> list
├── errors
│   ├── CLASS
│   └── FUNCTION
├── file
│   ├── CLASS
│   └── FUNCTION
│       ├── read(file: str) -> list
│       └── write(file: str, cls: object) -> Any
├── image
│   ├── CLASS
│   │   └── PNG(object)/__init__(self: Any) -> None
│   └── FUNCTION
│       └── crc(data: Any, length: Any, init: Any, xor: Any) -> Any
├── maths
│   ├── CLASS
│   └── FUNCTION
│       ├── arrangement(n: int, r: int) -> int
│       ├── combination(n: int, r: int) -> int
│       ├── acos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acoth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── acsch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── arrangement(n: int, r: int) -> int
│       ├── asec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── asinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── atanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── average(data: typing.Union[list, tuple], weights: typing.Union[list, tuple]) -> float
│       ├── bessel_i0(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── bessel_iv(v: typing.Union[int, float], x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── beta(p: typing.Union[int, float], q: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── central_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── coeff_det(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── combination(n: int, r: int) -> int
│       ├── corr_coeff(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── cos(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cosh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cot(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── coth(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cov(x: typing.Union[list, tuple], y: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── crt(n: typing.Union[list, tuple], a: typing.Union[list, tuple]) -> int
│       ├── csc(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── csch(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── cumprod(lst: typing.Union[list, tuple]) -> list
│       ├── cumsum(lst: typing.Union[list, tuple]) -> list
│       ├── deriv(f: Any, x: typing.Union[int, float], h: typing.Union[int, float], args: Any, kwargs: Any) -> float
│       ├── erf(x: typing.Union[int, float]) -> float
│       ├── exgcd(a: int, b: int) -> tuple
│       ├── exp(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── factorial(n: int) -> int
│       ├── freq(data: typing.Union[list, tuple]) -> dict
│       ├── gamma(alpha: typing.Union[int, float]) -> float
│       ├── gcd(args: int) -> int
│       ├── geom_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── harm_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── integ(f: Any, x_start: typing.Union[int, float], x_end: typing.Union[int, float], n: int, args: Any, kwargs: Any) -> float
│       ├── iroot(y: int, n: int) -> int
│       ├── is_possibly_square(n: int) -> bool
│       ├── is_square(n: int) -> bool
│       ├── isqrt(x: int) -> int
│       ├── kurt(data: typing.Union[list, tuple], fisher: bool) -> float
│       ├── lcm(args: int) -> int
│       ├── ln(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── lower_gamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── median(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── mod_order(a: int, n: int, b: int) -> int
│       ├── mode(data: typing.Union[list, tuple]) -> Any
│       ├── normalize(data: typing.Union[list, tuple], target: typing.Union[int, float, complex]) -> typing.Union[list, tuple]
│       ├── parity(x: int) -> int
│       ├── pi(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── primitive_root(a: int, single: bool) -> typing.Union[int, list]
│       ├── product(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── ptp(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── raw_moment(data: typing.Union[list, tuple], order: int) -> float
│       ├── roll(seq: typing.Union[list, tuple, str], shift: int) -> typing.Union[list, tuple, str]
│       ├── root(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sec(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sech(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sigma(i: int, n: int, f: Any) -> typing.Union[int, float, complex]
│       ├── sigmoid(x: typing.Union[int, float]) -> float
│       ├── sign(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── sin(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── sinh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── skew(data: typing.Union[list, tuple]) -> float
│       ├── square_mean(numbers: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── std(numbers: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── sumprod(arrays: typing.Union[list, tuple]) -> typing.Union[int, float, complex]
│       ├── tan(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── tanh(x: typing.Union[int, float]) -> typing.Union[int, float]
│       ├── totient(n: int) -> int
│       ├── upper_gamma(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       ├── var(numbers: typing.Union[list, tuple], dof: int) -> typing.Union[int, float, complex]
│       ├── xlogy(x: typing.Union[int, float, complex], y: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
│       └── zeta(alpha: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
├── multiprec
│   ├── CLASS
│   └── FUNCTION
│       ├── frac2dec(frac: fractions.Fraction, sigfigs: int) -> decimal.Decimal
│       ├── mp_cos(x: typing.Union[int, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
│       ├── mp_e(sigfigs: int, method: str) -> decimal.Decimal
│       ├── mp_ln(x: typing.Union[int, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal
│       ├── mp_log(x: typing.Union[int, str, decimal.Decimal], base: typing.Union[int, str, decimal.Decimal], sigfigs: int, builtin: bool) -> decimal.Decimal
│       ├── mp_phi(sigfigs: int, method: str) -> decimal.Decimal
│       ├── mp_pi(sigfigs: int, method: str) -> decimal.Decimal
│       └── mp_sin(x: typing.Union[int, str, decimal.Decimal], sigfigs: int) -> decimal.Decimal
├── numbers
│   ├── CLASS
│   └── FUNCTION
│       ├── float2fraction(number: float, mixed: bool, error: float) -> tuple
│       ├── int2roman(integer: int, overline: bool) -> str
│       ├── int2words(integer: int) -> str
│       ├── roman2int(roman_num: str) -> int
│       └── str2int(string: str) -> int
├── plotting
│   ├── CLASS
│   └── FUNCTION
│       ├── background(right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool) -> typing.Union[list, str]
│       ├── binary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], error: Any, compare: Any, string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── c_unary(function: Any, projection: str, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
│       ├── change(data: typing.Union[list, str]) -> typing.Union[list, str]
│       ├── color(text: str, rgb: typing.Union[list, tuple]) -> str
│       └── unary(function: Any, right: typing.Union[int, float], left: typing.Union[int, float], top: typing.Union[int, float], bottom: typing.Union[int, float], complexity: typing.Union[int, float], ratio: typing.Union[int, float], string: bool, basic: list, character: str, data: bool, coloration: Any) -> typing.Union[list, str]
├── polynomial
│   ├── CLASS
│   │   └── Polynomial(object)/__init__(self: Any, terms: Any) -> Any
│   └── FUNCTION
│       ├── from_coeffs(coeffs: Any) -> Any
│       ├── from_coords(coords: Any) -> Any
│       ├── leggauss(polynomial: Any) -> Any
│       ├── legpoly(n: Any) -> Any
│       └── poly(terms: Any) -> Any
├── pprinters
│   ├── CLASS
│   └── FUNCTION
│       └── pprint_matrix(matrix: Any, style: Any, output: Any) -> Any
├── random
│   ├── CLASS
│   └── FUNCTION
│       ├── __create_nested_list(dimensions: Any, func: Any) -> Any
│       ├── __validate_shape(shape: Any) -> Any
│       ├── choice(seq: typing.Union[list, tuple, str], shape: typing.Union[list, tuple]) -> Any
│       ├── gauss(mu: typing.Union[int, float], sigma: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── rand(shape: typing.Union[list, tuple]) -> typing.Union[float, list]
│       ├── randint(a: int, b: int, shape: typing.Union[list, tuple]) -> typing.Union[int, list]
│       └── uniform(a: typing.Union[int, float], b: typing.Union[int, float], shape: typing.Union[list, tuple]) -> typing.Union[float, list]
├── regression
│   ├── CLASS
│   └── FUNCTION
│       ├── lin_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       ├── par_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple]) -> list
│       └── poly_reg(x: typing.Union[list, tuple], y: typing.Union[list, tuple], n: int) -> list
├── sequence
│   ├── CLASS
│   └── FUNCTION
│       ├── arithmetic_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], d: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       ├── bernoulli(n: int, single: bool) -> list
│       ├── catalan(n: int, single: bool) -> typing.Union[int, list]
│       ├── farey(n: int) -> list
│       ├── fibonacci(n: int, single: bool) -> typing.Union[int, list]
│       ├── geometric_sequence(a1: typing.Union[int, float], an: typing.Union[int, float], r: typing.Union[int, float], n: typing.Union[int, float], s: typing.Union[int, float]) -> dict
│       └── recaman(n: int, single: bool) -> typing.Union[int, list]
├── stattest
│   ├── CLASS
│   └── FUNCTION
│       ├── chi2_cont(contingency: list, lambda_: float, calc_p: bool, corr: bool) -> tuple
│       ├── chisquare(observed: list, expected: list) -> tuple
│       ├── kurttest(data: list, two_tailed: bool) -> tuple
│       ├── mediantest(samples: Any, ties: Any, lambda_: Any, corr: Any) -> Any
│       ├── normaltest(data: list) -> tuple
│       └── skewtest(data: list, two_tailed: bool) -> tuple
├── test
│   ├── CLASS
│   └── FUNCTION
├── this
│   ├── CLASS
│   └── FUNCTION
├── tools
│   ├── CLASS
│   └── FUNCTION
│       ├── classify(array: typing.Union[list, tuple]) -> dict
│       ├── dedup(iterable: typing.Union[list, tuple, str]) -> typing.Union[list, tuple, str]
│       ├── frange(start: typing.Union[int, float], stop: typing.Union[int, float], step: float) -> list
│       ├── generate_primes(limit: int) -> list
│       ├── generate_semiprimes(limit: int) -> list
│       ├── geomspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── interp(data: typing.Union[list, tuple], length: int) -> list
│       ├── linspace(start: typing.Union[int, float], stop: typing.Union[int, float], number: int) -> list
│       ├── magic_square(n: Any) -> Any
│       ├── primality(n: int, iter_num: int) -> bool
│       ├── prime_factors(integer: int, dictionary: bool, pollard_rho: bool) -> typing.Union[list, dict]
│       └── split(iterable: typing.Union[list, tuple, str], key: typing.Union[list, tuple], retain: bool) -> list
├── types
│   ├── CLASS
│   └── FUNCTION
├── ufuncs
│   ├── CLASS
│   └── FUNCTION
│       ├── add(x: Any, y: Any) -> Any
│       ├── base_ufunc(arrays: Any, func: Any, args: Any, rtype: Any) -> Any
│       ├── divide(x: Any, y: Any) -> Any
│       ├── floor_divide(x: Any, y: Any) -> Any
│       ├── modulo(x: Any, y: Any) -> Any
│       ├── multiply(x: Any, y: Any) -> Any
│       ├── power(x: Any, y: Any, m: Any) -> Any
│       ├── subtract(x: Any, y: Any) -> Any
│       └── ufunc_helper(x: Any, y: Any, func: Any) -> Any
├── utils
│   ├── CLASS
│   │   ├── InfIterator(object)/__init__(self: Any, start: typing.Union[int, float, complex], mode: str, common: typing.Union[int, float, complex]) -> Any
│   │   ├── IntervalSet(object)/__init__(self: Any, intervals: Any) -> Any
│   │   ├── LinkedList(object)/__init__(self: Any) -> Any
│   │   ├── LinkedListNode(object)/__init__(self: Any, value: Any, next_node: Any) -> Any
│   │   └── OrderedSet(object)/__init__(self: Any, sequence: Any) -> Any
│   └── FUNCTION
└── zh_cn
    ├── CLASS
    └── FUNCTION
        ├── Fraction转为Decimal(分数对象: fractions.Fraction, 有效位数: int) -> decimal.Decimal
        ├── RC4伪随机生成算法(密钥序列: list) -> Any
        ├── RC4初始化密钥调度算法(密钥: bytes) -> list
        ├── RC4密码(文本: bytes, 密钥: bytes) -> bytes
        ├── ROT13密码(文本: str) -> str
        ├── S型函数(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── base64密码(文本: str, 解密: bool) -> str
        ├── x对数y乘积(x: float, y: float) -> float
        ├── y次方根(被开方数: typing.Union[int, float, complex], 开方数: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 一维傅里叶变换(数据: Any) -> pypynum.FourierT.FT1D
        ├── 上伽玛(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 上标转整数(上标字符串: str) -> str
        ├── 下伽玛(s: typing.Union[int, float, complex], x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 下标转整数(下标字符串: str) -> str
        ├── 中位数(数据: typing.List[float]) -> float
        ├── 中国剩余定理(n: typing.List[int], a: typing.List[int]) -> int
        ├── 中心矩(数据: typing.List[float], 阶数: int) -> float
        ├── 乘积和(数组: typing.List[typing.Any]) -> float
        ├── 代替密码(文本: str, 替换映射: dict, 解密: bool) -> str
        ├── 众数(数据: typing.List[typing.Any]) -> Any
        ├── 伽玛函数(alpha: float) -> float
        ├── 余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 偏度(数据: typing.List[float]) -> float
        ├── 全一(形状: Any, 返回类型: Any) -> Any
        ├── 全部填充(形状: Any, 填充值: Any, 返回类型: Any) -> Any
        ├── 全零(形状: Any, 返回类型: Any) -> Any
        ├── 写入(文件: str, 对象: object) -> Any
        ├── 几何平均数(数据: typing.List[float]) -> float
        ├── 凯撒密码(文本: str, 移位: int, 解密: bool) -> str
        ├── 判定系数(x: typing.List[float], y: typing.List[float]) -> float
        ├── 判断平方数(n: int) -> bool
        ├── 加权平均(数据: typing.List[float], 权重: typing.List[float]) -> float
        ├── 协方差(x: typing.List[float], y: typing.List[float], 自由度: int) -> float
        ├── 原根(a: int, 单个: bool) -> typing.Union[int, typing.List[int]]
        ├── 原点矩(数据: typing.List[float], 阶数: int) -> float
        ├── 双曲余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 双曲正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲余弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反双曲正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 反正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 可能是平方数(n: int) -> bool
        ├── 填充序列(形状: Any, 序列: Any, 重复: Any, 填充: Any, 返回类型: Any) -> Any
        ├── 多次方根取整(被开方数: int, 开方数: int) -> int
        ├── 多精度余弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度圆周率(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多精度对数(真数: typing.Union[int, float], 底数: typing.Union[int, float], 有效位数: int, 使用内置方法: bool) -> decimal.Decimal
        ├── 多精度欧拉数(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多精度正弦(x: typing.Union[int, float], 有效位数: int) -> decimal.Decimal
        ├── 多精度自然对数(真数: typing.Union[int, float], 有效位数: int, 使用内置方法: bool) -> decimal.Decimal
        ├── 多精度黄金分割率(有效位数: int, 方法: str) -> decimal.Decimal
        ├── 多项式方程(系数: list) -> list
        ├── 导数(函数: Any, 参数: float, 步长: float, 额外参数: Any, 额外关键字参数: Any) -> float
        ├── 峰度(数据: typing.List[float], 费希尔: bool) -> float
        ├── 希尔256密码(文本: bytes, 密钥: list, 解密: bool) -> bytes
        ├── 平均数(数据: typing.List[float]) -> float
        ├── 平方平均数(数据: typing.List[float]) -> float
        ├── 平方根取整(被开方数: int) -> int
        ├── 序列滚动(序列: typing.Iterator[typing.Any], 偏移: int) -> typing.Iterator[typing.Any]
        ├── 归一化(数据: typing.List[float], 目标: float) -> typing.List[float]
        ├── 扩展欧几里得算法(a: int, b: int) -> typing.Tuple[int, int, int]
        ├── 排列数(总数: int, 选取数: int) -> int
        ├── 数组(数据: list, 检查: bool) -> pypynum.Array.Array
        ├── 整数转上标(标准字符串: str) -> str
        ├── 整数转下标(标准字符串: str) -> str
        ├── 方差(数据: typing.List[float], 自由度: int) -> float
        ├── 普莱费尔密码(文本: str, 密钥: str, 解密: bool) -> str
        ├── 最大公约数(args: int) -> int
        ├── 最小公倍数(args: int) -> int
        ├── 极差(数据: typing.List[float]) -> float
        ├── 标准差(数据: typing.List[float], 自由度: int) -> float
        ├── 模运算阶(a: int, n: int, b: int) -> int
        ├── 欧拉函数(n: int) -> int
        ├── 正切(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 正割(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 正弦(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 相关系数(x: typing.List[float], y: typing.List[float]) -> float
        ├── 积分(函数: Any, 积分开始: float, 积分结束: float, 积分点数: int, 额外参数: Any, 额外关键字参数: Any) -> float
        ├── 积累乘积(数据: typing.List[float]) -> float
        ├── 符号函数(x: typing.Union[int, float, complex]) -> typing.Union[int, float, complex]
        ├── 类似形状全一(数组A: Any, 返回类型: Any) -> Any
        ├── 类似形状全零(数组A: Any, 返回类型: Any) -> Any
        ├── 类似形状填充(数组A: Any, 填充值: Any, 返回类型: Any) -> Any
        ├── 累乘积(序列: typing.List[float]) -> typing.List[float]
        ├── 累加和(序列: typing.List[float]) -> typing.List[float]
        ├── 线性方程组(左边: list, 右边: list) -> list
        ├── 组合数(总数: int, 选取数: int) -> int
        ├── 维吉尼亚密码(文本: str, 密钥: str, 解密: bool) -> str
        ├── 自然对数(真数: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 自然指数(指数: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 莫尔斯密码(文本: str, 解密: bool) -> str
        ├── 误差函数(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 读取(文件: str) -> list
        ├── 调和平均数(数据: typing.List[float]) -> float
        ├── 贝塔函数(p: float, q: float) -> float
        ├── 贝塞尔I0(x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 贝塞尔Iv(v: typing.Union[int, float], x: typing.Union[int, float]) -> typing.Union[int, float]
        ├── 负一整数次幂(指数: int) -> int
        ├── 转换为列表(数据: Any) -> list
        ├── 转换为数组(数据: Any) -> pypynum.Array.Array
        ├── 连续乘积(下界: int, 上界: int, 函数: typing.Callable) -> float
        ├── 连续加和(下界: int, 上界: int, 函数: typing.Callable) -> float
        ├── 阶乘函数(n: int) -> int
        ├── 阿特巴什密码(文本: str) -> str
        ├── 频率统计(数据: typing.List[typing.Any]) -> typing.Dict[typing.Any, int]
        └── 黎曼函数(alpha: float) -> float

代码测试

Code testing

from pypynum import (Array, Geometry, Logic, Matrix, Quaternion, Symbolics, Tensor, Vector,
                     cipher, constants, equations, maths, plotting, random, regression, tools)

...

print(Array.array())
print(Array.array([1, 2, 3, 4, 5, 6, 7, 8]))
print(Array.array([[1, 2, 3, 4], [5, 6, 7, 8]]))
print(Array.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]))

"""
[]
[1 2 3 4 5 6 7 8]
[[1 2 3 4]
 [5 6 7 8]]
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
"""

triangle = Geometry.Triangle((0, 0), (2, 2), (3, 0))
print(triangle.perimeter())
print(triangle.area())
print(triangle.centroid())

"""
8.06449510224598
3.0
(1.6666666666666667, 0.6666666666666666)
"""

a, b, c = 1, 1, 1
adder0, adder1 = Logic.HalfAdder("alpha", a, b), Logic.HalfAdder("beta", c, None)
xor0 = Logic.XOR("alpha")
ff0, ff1 = Logic.DFF("alpha"), Logic.DFF("beta")
xor0.set_order0(1)
xor0.set_order1(1)
Logic.connector(adder0, adder1)
Logic.connector(adder0, xor0)
Logic.connector(adder1, xor0)
Logic.connector(adder1, ff0)
Logic.connector(xor0, ff1)
print("sum: {}, carry: {}".format(ff0.out(), ff1.out()))

"""
sum: [1], carry: [1]
"""

m0 = Matrix.mat([[1, 2], [3, 4]])
m1 = Matrix.mat([[5, 6], [7, 8]])
print(m0)
print(m1)
print(m0 + m1)
print(m0 @ m1)
print(m0.inv())
print(m1.rank())

"""
[[1 2]
 [3 4]]
[[5 6]
 [7 8]]
[[ 6  8]
 [10 12]]
[[19 22]
 [43 50]]
[[ -1.9999999999999996   0.9999999999999998]
 [  1.4999999999999998 -0.49999999999999994]]
2
"""

q0 = Quaternion.quat(1, 2, 3, 4)
q1 = Quaternion.quat(5, 6, 7, 8)
print(q0)
print(q1)
print(q0 + q1)
print(q0 * q1)
print(q0.inverse())
print(q1.conjugate())

"""
(1+2i+3j+4k)
(5+6i+7j+8k)
(6+8i+10j+12k)
(-60+12i+30j+24k)
(0.18257418583505536+-0.3651483716701107i+-0.5477225575051661j+-0.7302967433402214k)
(5+-6i+-7j+-8k)
"""

print(Symbolics.BASIC)
print(Symbolics.ENGLISH)
print(Symbolics.GREEK)
print(Symbolics.parse_expr("-(10+a-(3.14+b0)*(-5))**(-ζn1-2.718/mΣ99)//9"))

"""
%()*+-./0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz
ΑΒΓΔΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤΥΦΧΨΩαβγδεζηθικλμνξοπρστυφχψω
[['10', '+', 'a', '-', ['3.14', '+', 'b0'], '*', '-5'], '**', ['-ζn1', '-', '2.718', '/', 'mΣ99'], '//', '9']
"""

t0 = Tensor.ten([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
t1 = Tensor.ten([[[9, 10], [11, 12]], [[13, 14], [15, 16]]])
print(t0)
print(t1)
print(t0 + t1)
print(t0 @ t1)

"""
[[[1 2]
  [3 4]]

 [[5 6]
  [7 8]]]
[[[ 9 10]
  [11 12]]

 [[13 14]
  [15 16]]]
[[[10 12]
  [14 16]]

 [[18 20]
  [22 24]]]
[[[ 31  34]
  [ 71  78]]

 [[155 166]
  [211 226]]]
"""

string = "PyPyNum"
encrypted = cipher.caesar(string, 10)
print(string)
print(encrypted)
print(cipher.caesar(encrypted, 10, decrypt=True))
encrypted = cipher.vigenere(string, "cipher")
print(string)
print(encrypted)
print(cipher.vigenere(encrypted, "cipher", decrypt=True))
encrypted = cipher.morse(string)
print(string)
print(encrypted)
print(cipher.morse(encrypted, decrypt=True))

"""
PyPyNum
ZiZiXew
PyPyNum
PyPyNum
RgEfRlo
PyPyNum
PyPyNum
.--. -.-- .--. -.-- -. ..- --
PYPYNUM
"""

v0 = Vector.vec([1, 2, 3, 4])
v1 = Vector.vec([5, 6, 7, 8])
print(v0)
print(v1)
print(v0 + v1)
print(v0 @ v1)
print(v0.normalize())
print(v1.angles())

"""
[1 2 3 4]
[5 6 7 8]
[ 5 12 21 32]
70
[0.18257418583505536  0.3651483716701107  0.5477225575051661  0.7302967433402214]
[1.1820279130506308, 1.0985826410133916, 1.0114070854293842, 0.9191723423169716]
"""

print(constants.TB)
print(constants.e)
print(constants.h)
print(constants.phi)
print(constants.pi)
print(constants.tera)

"""
1099511627776
2.718281828459045
6.62607015e-34
1.618033988749895
3.141592653589793
1000000000000
"""

p = [1, -2, -3, 4]
m = [
    [
        [1, 2, 3],
        [6, 10, 12],
        [7, 16, 9]
    ],
    [-1, -2, -3]
]
print(equations.poly_eq(p))
print(equations.lin_eq(*m))

"""
[(-1.5615528128088307-6.5209667308287455e-24j)   (1.0000000000000007+3.241554513744382e-25j)   (2.5615528128088294+4.456233626665941e-24j)]
[ 1.6666666666666667 -0.6666666666666666 -0.4444444444444444]
"""

print(maths.cot(constants.pi / 3))
print(maths.gamma(1.5))
print(maths.pi(1, 10, lambda x: x ** 2))
print(maths.product([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))
print(maths.sigma(1, 10, lambda x: x ** 2))
print(maths.var([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]))

"""
0.577350269189626
0.886226925452758
13168189440000
6469693230
385
73.29
"""

plt = plotting.unary(lambda x: x ** 2, top=10, bottom=0, character="+")
print(plt)
print(plotting.binary(lambda x, y: x ** 2 + y ** 2 - 10, right=10, left=0, compare="<=", basic=plotting.change(plt)))
print(plotting.c_unary(lambda x: x ** x, right=2, left=-2, top=2, bottom=-2, complexity=20, character="-"))

"""
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |           +                           +           
          |            +                         +            
          |                                                   
          |             +                       +             
  5.00e+00|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |              +                     +              
          |               +                   +               
          |                +                 +                
          |                 +               +                 
          |                  +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  1.00e+01|         +                               +         
          |                                                   
          |          +                             +          
          |                                                   
          |.........  +                           +           
          |.............                         +            
          |..............                                     
          |................                     +             
  5.00e+00|................_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
          |................                    +              
          |................                   +               
          |..............  +                 +                
          |.............    +               +                 
          |.........         +             +                  
          |                   +           +                   
          |                    +         +                    
          |                     +++   +++                     
  0.00e+00|________________________+++________________________
           -5.00e+00             0.00e+00             5.00e+00
  2.00e+00|           -                 -           -          -          -            -    
          |               -  -            -          -         -         -           -      
          |                     -           -         -        -        -          -        
          |-                       -          -       -       -        -         -          
          |     -   -                - -       --      -      -       -        -            
          |            -  -              -       -      -     -      -       -             -
          |                  -  - -       - --  - ---  -- -  --     -     - -         - -   
          |                         - -   -  --    --    -   -  - --     -       - -        
          |  -   -  - - -  -          - -- -   ---  ---  -   -   ---   --     - -           
          |             -    -  - - - --    ----- -- -- --- --  --  ---    --           -  -
          |               - -      -     ------------ ----  - --  -- - ---       - - -      
          |    -  -  -  - -  ----- - -- ----------------------- -- ----  - -- --            
          |   -  -   - -         - ---- ---------------------------------      - - - - -  - 
  0.00e+00|_ _ _ _ _ _ _ _-_-_-_-_---- ------------------------------------_-- _ _ _ _ _ _ _
          |            -  -   - - ----------------------------------------- -- - - - -      
          |   -  --  -  -       -- -  -  --------------------------------- -           -  - 
          |    -          - ---- - - -- --------------------- ----- ----    - -- -          
          |               -         - -- --------- -- -- -  -----  ---  -- -       - -  -   
          |             -  - -  - - - -    ---- --- --- --- --  --  ---     - -            -
          |  -   -  - -               - --     --   --   -   -    --   --       --          
          |                       - -     -  --    -    --   -- -  -     --        -  -     
          |                  -  -         - -   - - -  -- -   -     --      -           -   
          |            -  -            - -      --     --     -      -       - -           -
          |     -   -                -         -       -      -       -          -          
          |-                    -  -          -       -        -       -           -        
          |                  -              -         -        -        -            -      
          |               -               -          -         -         -                  
 -2.00e+00|___________-_________________-___________-_____________________-____________-____
           -2.00e+00                            0.00e+00                            2.00e+00
"""

print(random.gauss(0, 1, [2, 3, 4]))
print(random.rand([2, 3, 4]))
print(random.randint(0, 9, [2, 3, 4]))
print(random.uniform(0, 9, [2, 3, 4]))

"""
[[[1.0022026821190488, -0.38242004448759154, -0.23648445523561967, 0.43813038741951754], [-0.3778652198785619, -0.03865603124657112, -1.5186239424691736, -0.7368762975012327], [-0.7580654190380791, -1.3672869759158346, 0.582588816791107, 1.0281649895276377]], [[0.5270622699930536, 0.6132250709048543, 0.9764619731696673, -0.13740454362420268], [-2.0801461607759886, -0.1935521020633617, 0.44420106801354153, 1.4830089202063659], [-0.8790685594194517, 0.45517163054358967, -1.1448643981658326, 0.986414969442009]]]
[[[0.13698864758140294, 0.634190467772759, 0.25683276170297875, 0.9026812741081188], [0.26303437123782614, 0.02477620234532174, 0.9947822450199725, 0.5916822332583692], [0.7523977891797228, 0.6198410071512576, 0.05799276940261333, 0.4181042411131305]], [[0.21564211884049145, 0.30667940527138227, 0.03010277335333611, 0.904264028183912], [0.33977550248572597, 0.042594462434406455, 0.6371061749651907, 0.8639246364627866], [0.009159271907318911, 0.054475512265855563, 0.7109847662274855, 0.9695933487818381]]]
[[[1, 6, 0, 1], [0, 4, 8, 3], [2, 4, 2, 8]], [[9, 7, 0, 6], [6, 2, 4, 6], [2, 2, 0, 1]]]
[[[4.281963231653285, 7.6564706580977155, 2.7831005401808904, 4.69275453971821], [7.731377457312142, 7.026081604862776, 3.1623746844355916, 4.097454457127405], [1.0053860355938644, 8.396390096875859, 5.860124932392565, 0.7556741321519111]], [[3.0505373562186717, 5.846422325897977, 5.79128924014881, 5.322513543793011], [7.97334322055796, 0.4266873959996582, 6.217219949795519, 2.819046997201407], [7.195256735457888, 3.205909055908082, 2.9903485221015123, 6.695032815286013]]]
"""

print(regression.lin_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regression.par_reg(list(range(5)), [2, 4, 6, 7, 8]))
print(regression.poly_reg(list(range(5)), [2, 4, 6, 7, 8], 4))

"""
[1.5, 2.4000000000000004]
[-0.21428571428571563, 2.3571428571428625, 1.971428571428569]
[0.08333333333320592, -0.666666666666571, 1.4166666666628345, 1.1666666666688208, 1.9999999999999258]
"""

print(tools.classify([1, 2.3, 4 + 5j, "string", list, True, 3.14, False, tuple, tools]))
print(tools.dedup(["Python", 6, "NumPy", int, "PyPyNum", 9, "pypynum", "NumPy", 6, True]))
print(tools.frange(0, 3, 0.4))
print(tools.linspace(0, 2.8, 8))

"""
{<class 'int'>: [1], <class 'float'>: [2.3, 3.14], <class 'complex'>: [(4+5j)], <class 'str'>: ['string'], <class 'type'>: [<class 'list'>, <class 'tuple'>], <class 'bool'>: [True, False], <class 'module'>: [<module 'pypynum.tools' from 'C:\\Users\\Administrator\\PycharmProjects\\pythonProject\\pypynum\\tools.py'>]}
['Python', 6, 'NumPy', <class 'int'>, 'PyPyNum', 9, 'pypynum', True]
[0.0, 0.4, 0.8, 1.2000000000000002, 1.6, 2.0, 2.4000000000000004, 2.8000000000000003]
[0.0, 0.39999999999999997, 0.7999999999999999, 1.2, 1.5999999999999999, 1.9999999999999998, 2.4, 2.8]
"""

# 提示:
# 
# 测试已成功通过并结束。
# 
# 这些测试只是这个包功能的一部分。
# 
# 更多的功能需要自己探索和尝试!
# 
# Tip:
# 
# The test has been successfully passed and ended.
# 
# These tests are only part of the functionality of this package.
# 
# More features need to be explored and tried by yourself!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpypy-1.12.0.tar.gz (76.0 kB view details)

Uploaded Source

Built Distribution

numpypy-1.12.0-py3-none-any.whl (49.9 kB view details)

Uploaded Python 3

File details

Details for the file numpypy-1.12.0.tar.gz.

File metadata

  • Download URL: numpypy-1.12.0.tar.gz
  • Upload date:
  • Size: 76.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for numpypy-1.12.0.tar.gz
Algorithm Hash digest
SHA256 e5cb98ed4cc730e5f251941bb26f5d4e4d9f6a0c538d8e2ebdc945096c5908eb
MD5 99f479de49a103e84803245ccd138560
BLAKE2b-256 5ab5e95f21956487cb368ed58f90fa34222e9c5a1e73c9529d9973010c64bac2

See more details on using hashes here.

File details

Details for the file numpypy-1.12.0-py3-none-any.whl.

File metadata

  • Download URL: numpypy-1.12.0-py3-none-any.whl
  • Upload date:
  • Size: 49.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for numpypy-1.12.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4c18ece3b7806096953bc2a45aed051ea77ca5fe3d6bdc568ee307571c98c579
MD5 a2c4142fbc0f61f779a0b512221a1643
BLAKE2b-256 591126f2a492502065bce69dbc59ae947ab9ba295b68864eb608263270dd8947

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page