Utility functions for numpy, written in cython
Project description
A small package with fast numpy routines written in cython
Documentation
Installation
pip install numpyx
Functions in this package
All functions here are specialized for double arrays only
Short-cut functions
These functions are similar to numpy functions but are faster by exiting out of a loop when one element satisfies the given condition
any_less_than
any_less_or_equal_than
any_greater_than
any_greater_or_equal_than
any_equal_to
array_is_sorted
allequal
minmax1d
Calculate min. and max. value in one go
searchsorted1
like search sorted, but for 1d double arrays. It is faster than the more generic numpy version
searchsorted2
like search sorted but allows to search across any column of a 2d array
nearestidx
Return the index of the item in an array which is nearest to a given value. The array does not need to be sorted (this is a simple linear search)
nearestitem
For any value of an array, search the nearest item in another array and put its value in the output result
weightedavg
Weighted averageof a time-series
trapz
trapz integration specialized for contiguous / double arrays. Quite faster than generic numpy/scipy
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file numpyx-1.4.0.tar.gz
.
File metadata
- Download URL: numpyx-1.4.0.tar.gz
- Upload date:
- Size: 199.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 68a3ccecece60f4df988a58ffef697fa9ab1a598688d1c9ffa3dcba5ae654dce |
|
MD5 | 9a9022f9adc1826f64e3bb252ecd0f06 |
|
BLAKE2b-256 | 58ba260d7eb0846b503162e22006feb8e13a013d18f80c08699b8e37e0fb53ed |
File details
Details for the file numpyx-1.4.0-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 113.1 kB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9348b670f6f0383dad4fcf8f9b773e6da06acb1874bb56b98829d81dd9f9e7bd |
|
MD5 | aa86227547a674a2d24d6a2fc3323ef7 |
|
BLAKE2b-256 | bdd953fe7efe46521ab10b10169a099b2d22acca9dd3827cd745fa6d96f226fe |
File details
Details for the file numpyx-1.4.0-cp312-cp312-win32.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp312-cp312-win32.whl
- Upload date:
- Size: 95.8 kB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b74805ef86941e340d98449b377d256637856849c9fb7c151510d55c4373fa9 |
|
MD5 | 628f8454ed45e329a325ab8569286104 |
|
BLAKE2b-256 | b0d74df4f48aa012ce8d3963405a29371f4cd96991060a43b363d12b539169cb |
File details
Details for the file numpyx-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 611.6 kB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | aea129adee4f42e8080182d94b196be186d33e12094899997002e9d0bce3cecf |
|
MD5 | 6cb3dc3736ea23c266f76382260fd6b1 |
|
BLAKE2b-256 | cc73c91910f44c98587c7ac39928f1d541f52b7874d4cf663e58b09fa00d2543 |
File details
Details for the file numpyx-1.4.0-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 113.3 kB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | af27f460e08d11cf3b1f03d9c4459d1a478eecc08afef1af243ee198114943ba |
|
MD5 | eb2017f33a304ae03a99389e0307b055 |
|
BLAKE2b-256 | 6c74996e8caa3e4ff1ec1425a7d722264ec08ebf8286458290583342e19cb154 |
File details
Details for the file numpyx-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl
- Upload date:
- Size: 122.3 kB
- Tags: CPython 3.12, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2e368c81abae3adce00cd59ca7015f8c73c56e4edcdb8608773eb694b1d00ef |
|
MD5 | f69a077770768806fbc49f2ccd0ad2cb |
|
BLAKE2b-256 | 84959fb488af2dbd1733bc2b6f6373e17d7704a282d101a7544136002bfc3390 |
File details
Details for the file numpyx-1.4.0-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 112.7 kB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef53817612fb5fc406047a4a2809eda8f42aa34e8def2dc817740580bbe3f98c |
|
MD5 | 8df667e5f8de3895163bbbb00f482084 |
|
BLAKE2b-256 | 3f20aa4535a3c73c1fba333f0a57bc6e975e2f638e26f0609d4f271841d54af5 |
File details
Details for the file numpyx-1.4.0-cp311-cp311-win32.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp311-cp311-win32.whl
- Upload date:
- Size: 95.8 kB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c7d80e9a815479eb45b1b0266e1a674948d1be14fe4f60b21795c0a4f916ff36 |
|
MD5 | 65e4bf8dc6624fe06df69485c2c8ad65 |
|
BLAKE2b-256 | a081a035f07be83c7618287e8eadb5dfaa88b978bbab7d807f6e6a8ac8774cf1 |
File details
Details for the file numpyx-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 620.4 kB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 708bb30640a02d573e705c48f521b13ad611ac2c75a17711a4683240f575f132 |
|
MD5 | 419247f69bf8298f800f741571cdb692 |
|
BLAKE2b-256 | dcbbae1e25680c530801ada3000f805be322644c392c2590a7e89ed678c4eb1a |
File details
Details for the file numpyx-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 112.0 kB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f29bce433fbdb5a5579d5b89a1ed43b504a7bc27ee02896e8cffce21e943d51 |
|
MD5 | 5808e8801237778eb805e1fecd8d4fd1 |
|
BLAKE2b-256 | ede3b9c1a54bf741bf992886b0f4d9c241dfd125bb9b7f6427f8b4ec49ca29bc |
File details
Details for the file numpyx-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
- Upload date:
- Size: 120.9 kB
- Tags: CPython 3.11, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b58ea128673ad2420b7e64ae7c8534239d0ed8dd0a11582fba0664edd81ac79 |
|
MD5 | ef525e5246dbc7e5e302f865b3573c95 |
|
BLAKE2b-256 | 9a229cf3a18eeeac3d1a770d86faaa096b2b0e1af14716a09a1cc7dbdfea168a |
File details
Details for the file numpyx-1.4.0-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 112.6 kB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3793124648b16aea049e6f7847977e7b26725d472b000ae62a400fed688917b0 |
|
MD5 | 0f71bfdf7a5e060ae6133888c095225c |
|
BLAKE2b-256 | 5b9cd1d4d2d7029f8cc55822553b3a1a794b483e769c7142e5fd4671b859a4b0 |
File details
Details for the file numpyx-1.4.0-cp310-cp310-win32.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp310-cp310-win32.whl
- Upload date:
- Size: 96.1 kB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9b6a4b6c2518c55e2ac49b9cd1bfa7371dca4eef616a5d69762d6ca0d0801753 |
|
MD5 | af517164b4e9202dfe7a68f56c4a7fd0 |
|
BLAKE2b-256 | ab376199cabcfae2c0a919918dd86a4e0369115047aed8ca632f66645a10879c |
File details
Details for the file numpyx-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 576.9 kB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 48cb1132d71e09d61cae72c6e5e92fbacdb9427faef219492b286dbb89b8cb4c |
|
MD5 | 2d3dd07e28ef2f870fb4b86120cc0d8f |
|
BLAKE2b-256 | bba4fa4f90a1ef2bd82027aa085e769a3ad62fd2bd600db808c9ac8cfcbc5365 |
File details
Details for the file numpyx-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 111.6 kB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d2d875193f4be28851c9dfb9dc363a05b601b483ce9998527ef10d7e11c3057 |
|
MD5 | 0d6544fbcaaee05bb38503e8b44759cc |
|
BLAKE2b-256 | c7afb705283ad86122b53ca9ad096ccee772af026b163327133f8d1669714237 |
File details
Details for the file numpyx-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
- Upload date:
- Size: 120.4 kB
- Tags: CPython 3.10, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2d378fe09813ad7ad939294f15e82db27029addc3e0995a1d4c318ae43bae11 |
|
MD5 | 6c458807eed122162033d407320f01ad |
|
BLAKE2b-256 | 40c62554583f69d29da2248def7c4b0668bda0acf0b9102b9b71cf6bde7ffead |
File details
Details for the file numpyx-1.4.0-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 113.1 kB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca2635b61461810c8eb0bae86a1af458f62e05014fbb2164998028bffd3ad475 |
|
MD5 | e4bee72eea4cda10c9efa60170a64caf |
|
BLAKE2b-256 | afa1eac4117fdfa85a040514dde152909c84ef0dff0fb05f2caa1fdf1ba749da |
File details
Details for the file numpyx-1.4.0-cp39-cp39-win32.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp39-cp39-win32.whl
- Upload date:
- Size: 96.6 kB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fa7dca361dcb3d0ea996f941c2f6705aadaa6274d7eabf8524a5d5b5cf53ad65 |
|
MD5 | a19c288045aa37a98a413520cea65b0e |
|
BLAKE2b-256 | eb2342a458fcffb9346c883256f49800bae31e26f7bd3a6d4fe74f229414f49f |
File details
Details for the file numpyx-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 579.7 kB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d131f317109437ee6b99babcc2a199b1982e8a4b4f2466ce9ce4c0de3f8b204 |
|
MD5 | 9f9c1fdcf825e50560e28f540c7fbd28 |
|
BLAKE2b-256 | 5dee0f355709c6d743d70e993fd8e04428390bd847c9ebc83a62ca2222d2ea90 |
File details
Details for the file numpyx-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 112.2 kB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 74e255b3bc1052fcf0b430fdae635d04311da2a8d6e06bc5d9dbc18287decc31 |
|
MD5 | cd9268c6e74044abbf577198fd41a9d1 |
|
BLAKE2b-256 | e6172a6febbea6c279cf28999ae182a6d978337d209c373702d397c5e6a67141 |
File details
Details for the file numpyx-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
.
File metadata
- Download URL: numpyx-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 121.0 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2d7a9cf09c32b56613f75639eab01414fc48a55bf814824f8d04483b34cd1427 |
|
MD5 | e298942b335f9effc510d68c8ec3bf6c |
|
BLAKE2b-256 | a7ddfecd704e7b375e51b121b62b935385cfac9f79689c7071a49887231c74dd |