Skip to main content

Utility functions for numpy, written in cython

Project description

A small package with fast numpy routines written in cython

Documentation

https://numpyx.readthedocs.io

Installation

pip install numpyx


Functions in this package

All functions here are specialized for double arrays only

Short-cut functions

These functions are similar to numpy functions but are faster by exiting out of a loop when one element satisfies the given condition

  • any_less_than

  • any_less_or_equal_than

  • any_greater_than

  • any_greater_or_equal_than

  • any_equal_to

  • array_is_sorted

  • allequal

minmax1d

Calculate min. and max. value in one go

searchsorted1

like search sorted, but for 1d double arrays. It is faster than the more generic numpy version

searchsorted2

like search sorted but allows to search across any column of a 2d array

nearestidx

Return the index of the item in an array which is nearest to a given value. The array does not need to be sorted (this is a simple linear search)

nearestitem

For any value of an array, search the nearest item in another array and put its value in the output result

weightedavg

Weighted averageof a time-series

trapz

trapz integration specialized for contiguous / double arrays. Quite faster than generic numpy/scipy

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numpyx-1.4.0.tar.gz (199.1 kB view details)

Uploaded Source

Built Distributions

numpyx-1.4.0-cp312-cp312-win_amd64.whl (113.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

numpyx-1.4.0-cp312-cp312-win32.whl (95.8 kB view details)

Uploaded CPython 3.12 Windows x86

numpyx-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (611.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

numpyx-1.4.0-cp312-cp312-macosx_11_0_arm64.whl (113.3 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

numpyx-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl (122.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

numpyx-1.4.0-cp311-cp311-win_amd64.whl (112.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

numpyx-1.4.0-cp311-cp311-win32.whl (95.8 kB view details)

Uploaded CPython 3.11 Windows x86

numpyx-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (620.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

numpyx-1.4.0-cp311-cp311-macosx_11_0_arm64.whl (112.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

numpyx-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl (120.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

numpyx-1.4.0-cp310-cp310-win_amd64.whl (112.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

numpyx-1.4.0-cp310-cp310-win32.whl (96.1 kB view details)

Uploaded CPython 3.10 Windows x86

numpyx-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (576.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

numpyx-1.4.0-cp310-cp310-macosx_11_0_arm64.whl (111.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

numpyx-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl (120.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

numpyx-1.4.0-cp39-cp39-win_amd64.whl (113.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

numpyx-1.4.0-cp39-cp39-win32.whl (96.6 kB view details)

Uploaded CPython 3.9 Windows x86

numpyx-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (579.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

numpyx-1.4.0-cp39-cp39-macosx_11_0_arm64.whl (112.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

numpyx-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl (121.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file numpyx-1.4.0.tar.gz.

File metadata

  • Download URL: numpyx-1.4.0.tar.gz
  • Upload date:
  • Size: 199.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for numpyx-1.4.0.tar.gz
Algorithm Hash digest
SHA256 68a3ccecece60f4df988a58ffef697fa9ab1a598688d1c9ffa3dcba5ae654dce
MD5 9a9022f9adc1826f64e3bb252ecd0f06
BLAKE2b-256 58ba260d7eb0846b503162e22006feb8e13a013d18f80c08699b8e37e0fb53ed

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 113.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9348b670f6f0383dad4fcf8f9b773e6da06acb1874bb56b98829d81dd9f9e7bd
MD5 aa86227547a674a2d24d6a2fc3323ef7
BLAKE2b-256 bdd953fe7efe46521ab10b10169a099b2d22acca9dd3827cd745fa6d96f226fe

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 0b74805ef86941e340d98449b377d256637856849c9fb7c151510d55c4373fa9
MD5 628f8454ed45e329a325ab8569286104
BLAKE2b-256 b0d74df4f48aa012ce8d3963405a29371f4cd96991060a43b363d12b539169cb

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aea129adee4f42e8080182d94b196be186d33e12094899997002e9d0bce3cecf
MD5 6cb3dc3736ea23c266f76382260fd6b1
BLAKE2b-256 cc73c91910f44c98587c7ac39928f1d541f52b7874d4cf663e58b09fa00d2543

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af27f460e08d11cf3b1f03d9c4459d1a478eecc08afef1af243ee198114943ba
MD5 eb2017f33a304ae03a99389e0307b055
BLAKE2b-256 6c74996e8caa3e4ff1ec1425a7d722264ec08ebf8286458290583342e19cb154

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2e368c81abae3adce00cd59ca7015f8c73c56e4edcdb8608773eb694b1d00ef
MD5 f69a077770768806fbc49f2ccd0ad2cb
BLAKE2b-256 84959fb488af2dbd1733bc2b6f6373e17d7704a282d101a7544136002bfc3390

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 112.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ef53817612fb5fc406047a4a2809eda8f42aa34e8def2dc817740580bbe3f98c
MD5 8df667e5f8de3895163bbbb00f482084
BLAKE2b-256 3f20aa4535a3c73c1fba333f0a57bc6e975e2f638e26f0609d4f271841d54af5

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 95.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c7d80e9a815479eb45b1b0266e1a674948d1be14fe4f60b21795c0a4f916ff36
MD5 65e4bf8dc6624fe06df69485c2c8ad65
BLAKE2b-256 a081a035f07be83c7618287e8eadb5dfaa88b978bbab7d807f6e6a8ac8774cf1

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 708bb30640a02d573e705c48f521b13ad611ac2c75a17711a4683240f575f132
MD5 419247f69bf8298f800f741571cdb692
BLAKE2b-256 dcbbae1e25680c530801ada3000f805be322644c392c2590a7e89ed678c4eb1a

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f29bce433fbdb5a5579d5b89a1ed43b504a7bc27ee02896e8cffce21e943d51
MD5 5808e8801237778eb805e1fecd8d4fd1
BLAKE2b-256 ede3b9c1a54bf741bf992886b0f4d9c241dfd125bb9b7f6427f8b4ec49ca29bc

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5b58ea128673ad2420b7e64ae7c8534239d0ed8dd0a11582fba0664edd81ac79
MD5 ef525e5246dbc7e5e302f865b3573c95
BLAKE2b-256 9a229cf3a18eeeac3d1a770d86faaa096b2b0e1af14716a09a1cc7dbdfea168a

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 112.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3793124648b16aea049e6f7847977e7b26725d472b000ae62a400fed688917b0
MD5 0f71bfdf7a5e060ae6133888c095225c
BLAKE2b-256 5b9cd1d4d2d7029f8cc55822553b3a1a794b483e769c7142e5fd4671b859a4b0

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 96.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9b6a4b6c2518c55e2ac49b9cd1bfa7371dca4eef616a5d69762d6ca0d0801753
MD5 af517164b4e9202dfe7a68f56c4a7fd0
BLAKE2b-256 ab376199cabcfae2c0a919918dd86a4e0369115047aed8ca632f66645a10879c

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48cb1132d71e09d61cae72c6e5e92fbacdb9427faef219492b286dbb89b8cb4c
MD5 2d3dd07e28ef2f870fb4b86120cc0d8f
BLAKE2b-256 bba4fa4f90a1ef2bd82027aa085e769a3ad62fd2bd600db808c9ac8cfcbc5365

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0d2d875193f4be28851c9dfb9dc363a05b601b483ce9998527ef10d7e11c3057
MD5 0d6544fbcaaee05bb38503e8b44759cc
BLAKE2b-256 c7afb705283ad86122b53ca9ad096ccee772af026b163327133f8d1669714237

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2d378fe09813ad7ad939294f15e82db27029addc3e0995a1d4c318ae43bae11
MD5 6c458807eed122162033d407320f01ad
BLAKE2b-256 40c62554583f69d29da2248def7c4b0668bda0acf0b9102b9b71cf6bde7ffead

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 113.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ca2635b61461810c8eb0bae86a1af458f62e05014fbb2164998028bffd3ad475
MD5 e4bee72eea4cda10c9efa60170a64caf
BLAKE2b-256 afa1eac4117fdfa85a040514dde152909c84ef0dff0fb05f2caa1fdf1ba749da

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: numpyx-1.4.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 96.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for numpyx-1.4.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fa7dca361dcb3d0ea996f941c2f6705aadaa6274d7eabf8524a5d5b5cf53ad65
MD5 a19c288045aa37a98a413520cea65b0e
BLAKE2b-256 eb2342a458fcffb9346c883256f49800bae31e26f7bd3a6d4fe74f229414f49f

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d131f317109437ee6b99babcc2a199b1982e8a4b4f2466ce9ce4c0de3f8b204
MD5 9f9c1fdcf825e50560e28f540c7fbd28
BLAKE2b-256 5dee0f355709c6d743d70e993fd8e04428390bd847c9ebc83a62ca2222d2ea90

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74e255b3bc1052fcf0b430fdae635d04311da2a8d6e06bc5d9dbc18287decc31
MD5 cd9268c6e74044abbf577198fd41a9d1
BLAKE2b-256 e6172a6febbea6c279cf28999ae182a6d978337d209c373702d397c5e6a67141

See more details on using hashes here.

File details

Details for the file numpyx-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numpyx-1.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2d7a9cf09c32b56613f75639eab01414fc48a55bf814824f8d04483b34cd1427
MD5 e298942b335f9effc510d68c8ec3bf6c
BLAKE2b-256 a7ddfecd704e7b375e51b121b62b935385cfac9f79689c7071a49887231c74dd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page