numeral systems - number base conversion module
Project description
numeral system conversion module; converts values from one number base to another
Any real or complex number can be converted to/from a base of any real or imaginary value
Standard
representation in a positional numeral system (base ten, base sixty)
Number bases here are integers (2, 3, 10, …), negatives, (-2, -10, -25, …), reals (1.5, 3.14159, -2.71828, …) or imaginary (2i, -4.5i, 6i, …). Additionally, inverted values (0.5, -0.36788, 0.001, …) are allowed in use as a base. Invalid values as a base are 0, 1 and any value whose absolute value is 1.
Non-standard
representation in a non-positional numeral system (roman, factorial)
A non-positional numeral system is one where values do not conform to the positional system. These can be alphabetic, like Roman numerals, or a mixed base system, like factorial. Also included are positional-like bases that have limited representation; not all values can be shown. Examples of these are base one and minus one.
Digits
The first one hundred digits used (in order) are 0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~ \t\n\r\x0b\x0c. After this, which digits are used will be dependent on your system encoding. However, general order will be from the lowest Unicode plane to the highest (skipping already seen digits).
References
positive real base conversion: (Ref. A) A. Rényi, “Representations for real numbers and their ergodic properties”, Acta Mathematica Academic Sci. Hungar., 1957, vol. 8, pp. 433-493
negative real base conversion: (Ref. B) S. Ito, T. Sadahiro, “Beta-expansions with negative bases”, Integers, 2009, vol. 9, pp. 239-259
base 2i: (Ref. C) D. Knuth, “An Imaginary Number System”, Communications of the ACM, 1960, vol. 3, pp. 245-247
base -10: (Ref. D) V. Grünwald, “Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale)”, Giornale di matematiche di Battaglini, 1885, vol. 23, pp. 203-221
imaginary base conversion/summary: (Ref. E) P. Herd, “Imaginary Number Bases”
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file numsys-1.0.1.tar.gz
.
File metadata
- Download URL: numsys-1.0.1.tar.gz
- Upload date:
- Size: 37.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a9cb487ff2214e0ae31c8faba682df1e5500d60bad467aac6199139bd028a66f |
|
MD5 | 84f8a479db37d04c20c669e12d5dd3fe |
|
BLAKE2b-256 | 527fc92bb88d7068bf9ec96ec79ade81442e7311061e51b1d3610db2f87fd357 |
File details
Details for the file numsys-1.0.1-py3-none-any.whl
.
File metadata
- Download URL: numsys-1.0.1-py3-none-any.whl
- Upload date:
- Size: 38.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bcf79805295e7d099149a6db31fac10f63a4cc348d05f7f57c81ce97200443f |
|
MD5 | 5b7f5a2b572ec00372689f18f0f15835 |
|
BLAKE2b-256 | 643641753d467dbc97509b1c6aef5af0ddb971b21447b742e6c2fc3062efa7d3 |