Skip to main content

A simulator for neutrino propagation through the earth.

Project description

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial repository for visualizing output from the code and creating user-defined models.

Installation

with pip

python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 107 GeV neutrinos at 10 degrees with 107 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 106,106.25,106.5,…1011 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table) or custom. Default is allm.

  9. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  10. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  11. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Viewing output results: output_*.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_*.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_C_D_E_F_G, where

A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
B = Lepton_type: tau is for tau leptons & muon is for muons.
C = idepth: depth of water layer, in km.
D = Neutrino (or anti-neutrino) cross-section model.
E = Charged lepton photonuclear energy loss model.
F = Energy loss type: can be stochastic or continuous.
G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

Neutrino/Anti-Neutrino Cross-Section Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 81, 114012

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 81, 114012

CTEQ18-NLO

Phys. Rev. D 103, 014013, Phys. Rev. D 81, 114012

Connolly, Thorne, Waters (CTW)

Phys. Rev. D 83, 113009

nCTEQ15

Phys. Rev. D 93, 085037, Phys. Rev. D 81, 114012

User Defined

See nuPyProp tutorial repository

Charged Lepton Photonuclear Energy Loss Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 63, 094020

Bezrukov-Bugaev (BB)

Yad. Fiz. 33, 1195, Phys. Rev. D 63, 094020

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 63, 094020

Capella, Kaidalov, Merino, Tran (CKMT)

Eur. Phys. J. C 10, 153 Phys. Rev. D 63, 094020

User Defined

See nuPyProp tutorial repository

Code Execution Timing Tables

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

τ

Stochastic

107

1-35

108

1.07*, 0.26***

τ

Continuous

107

1-35

108

0.88*

τ

Stochastic

108

1-35

108

6.18*, 1.53***

τ

Continuous

108

1-35

108

5.51*

τ

Stochastic

109

1-35

108

27.96*, 5.08***

τ

Continuous

109

1-35

108

19.11*

τ

Stochastic

1010

1-35

108

49.80*, 12.43***

τ

Continuous

1010

1-35

108

35.59*

τ

Stochastic

1011

1-35

108

12.73***

τ

Continuous

1011

1-35

108

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

μ

Stochastic

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

0.95*

μ

Stochastic

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

3.19*

μ

Stochastic

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

5.17*

μ

Stochastic

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

111.77**

μ

Continuous

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

7.42*

μ

Stochastic

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

98.17*

μ

Continuous

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

9.76*

μ

Stochastic

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.

  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.

  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.

  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.

  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.

  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: sudo apt-get install gfortran

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: brew install gcc

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nupyprop-0.1.7.post102-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post102-cp39-cp39-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nupyprop-0.1.7.post102-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post102-cp38-cp38-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nupyprop-0.1.7.post102-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post102-cp37-cp37m-macosx_10_9_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nupyprop-0.1.7.post102-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post102-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5e2d159c6721475c515b61c11ee4f969207a08a2633a10eabf467c9dff6ab1e
MD5 e6a4a2ca8287207af5fbfb5cb293f26a
BLAKE2b-256 b327a1e49fbe03fc0ffd71ad267b58510d408e0d3108ed47d98ee0ca97074fcc

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post102-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post102-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post102-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c2d23f8a0e66022b192cb3cfb41d656f1c0d9fd2f59975d2ed088b2058046043
MD5 c36dec4f72dc5ba87fbb84bf9b942415
BLAKE2b-256 f3c249bba30718903a8c43bded2707914413e1071f8623e64c199be04d001d1e

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post102-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post102-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab528cb835b9cd03317132836d2c9eb9c8aad7e1a9cd5a164ab36339291d2f31
MD5 39603dd4d89b068be662f629e4e59777
BLAKE2b-256 4083f753919f185b0cd7fc34128e048b7859c7576f4630a066c520400e24903c

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post102-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post102-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post102-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 24bba97c2fef2583bcaf28f1e3f5a66e432fe3e03016ad5b37df98eeaf07549f
MD5 91996deb22ddbdb393010e4b1fc21092
BLAKE2b-256 eb63f3b8014f470f3ad56d0b8490c6c0b0db212332eecc3a474b91b8af9d133b

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post102-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post102-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 914f6d791d19c82ec7a86cced4b123a33c37bce368cb3c14a68f31179e5e404d
MD5 31a995586ee0427fde969a1a1257fa01
BLAKE2b-256 73999d211fe1899297c7c4344b337b1111585784750d8212d156fe5db9e5a46f

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post102-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post102-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post102-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 567ed80917efec4b01f86c7f13b71beafa3d90735cb23e11b0b54b9876349aef
MD5 65dbc5a4efa9680afa7d0da8ebcc543f
BLAKE2b-256 d7e086538e0b5a6d9d3efa5f6715329659f0b388c6dc79ebefecb0b3e869038b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page