Skip to main content

A simulator for neutrino propagation through the earth.

Project description

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial repository for visualizing output from the code and creating user-defined models.

Installation

with pip

python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 107 GeV neutrinos at 10 degrees with 107 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 106,106.25,106.5,…1011 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table) or custom. Default is allm.

  9. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  10. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  11. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Viewing output results: output_*.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_*.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_C_D_E_F_G, where

A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
B = Lepton_type: tau is for tau leptons & muon is for muons.
C = idepth: depth of water layer, in km.
D = Neutrino (or anti-neutrino) cross-section model.
E = Charged lepton photonuclear energy loss model.
F = Energy loss type: can be stochastic or continuous.
G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

Neutrino/Anti-Neutrino Cross-Section Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 81, 114012

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 81, 114012

CTEQ18-NLO

Phys. Rev. D 103, 014013, Phys. Rev. D 81, 114012

Connolly, Thorne, Waters (CTW)

Phys. Rev. D 83, 113009

nCTEQ15

Phys. Rev. D 93, 085037, Phys. Rev. D 81, 114012

User Defined

See nuPyProp tutorial repository

Charged Lepton Photonuclear Energy Loss Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 63, 094020

Bezrukov-Bugaev (BB)

Yad. Fiz. 33, 1195, Phys. Rev. D 63, 094020

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 63, 094020

Capella, Kaidalov, Merino, Tran (CKMT)

Eur. Phys. J. C 10, 153 Phys. Rev. D 63, 094020

User Defined

See nuPyProp tutorial repository

Code Execution Timing Tables

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

τ

Stochastic

107

1-35

108

1.07*, 0.26***

τ

Continuous

107

1-35

108

0.88*

τ

Stochastic

108

1-35

108

6.18*, 1.53***

τ

Continuous

108

1-35

108

5.51*

τ

Stochastic

109

1-35

108

27.96*, 5.08***

τ

Continuous

109

1-35

108

19.11*

τ

Stochastic

1010

1-35

108

49.80*, 12.43***

τ

Continuous

1010

1-35

108

35.59*

τ

Stochastic

1011

1-35

108

12.73***

τ

Continuous

1011

1-35

108

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

μ

Stochastic

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

0.95*

μ

Stochastic

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

3.19*

μ

Stochastic

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

5.17*

μ

Stochastic

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

111.77**

μ

Continuous

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

7.42*

μ

Stochastic

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

98.17*

μ

Continuous

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

9.76*

μ

Stochastic

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.

  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.

  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.

  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.

  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.

  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: sudo apt-get install gfortran

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: brew install gcc

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nupyprop-0.1.7.post109-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post109-cp39-cp39-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nupyprop-0.1.7.post109-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post109-cp38-cp38-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nupyprop-0.1.7.post109-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post109-cp37-cp37m-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nupyprop-0.1.7.post109-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post109-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7433c525a6d87c20a039ab12bc7f1b840ef52c0d06937b9aff98568c4bc589b3
MD5 caf5cd1a495b36947002bda9e24f2142
BLAKE2b-256 da465e23928a6f5d8d5f44f3686ade9b3f2872d98679d9f98111a01d80e55831

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post109-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post109-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post109-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9fdf990fd7fa948b02303ac1d764ca10015eb7cf4bcf7bc3e183d8eddede3ded
MD5 39d7b2398457cebbbfba60663da8b21f
BLAKE2b-256 fd89eeffe860d59f158e9f1741e145a63f580375b97af9cd482ce4d5c409307a

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post109-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post109-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 991d086a674861e26336590050819e5df83bcea93ed5045fb353516143fd7fde
MD5 2feff98aa1035155f28b79b970d01ff5
BLAKE2b-256 bdd94f82f2102a713a3ea7bb67c36111aa390664b72e56faecb6c65720471b3f

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post109-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post109-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post109-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 02c95286a444daecbabe8c7f03817ca186c4056b7ed4d24758a14b58bce6bfaf
MD5 5ab177106297c847bbd277cf5c58fd7b
BLAKE2b-256 fc09a49d3df0802f3be6796bee352d82d3abe2db9b56f309e757f59679ae17ad

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post109-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post109-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e24111355cbc56945140c72b05e4616466925c0b213761d66448a648eab0e4bd
MD5 8c99625efcf7d0d9c882c727161844c6
BLAKE2b-256 e9c819e2834f9860de27ca8ea236fe6fb6b8da33a6898eaa8c45479254045830

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post109-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post109-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post109-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a161489bc56be586ca48578bfac4e551d7b8e9e88039cb1d31c709d89e35a6e
MD5 c71e9c2d5564f474065d096a1f0586c2
BLAKE2b-256 cb9129b01daa6da45453bac13a39a47eff23debe5ad7eb9b5bca028bbefdf46b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page