Skip to main content

A simulator for neutrino propagation through the earth.

Project description

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial repository for visualizing output from the code and creating user-defined models.

Installation

with pip

python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 107 GeV neutrinos at 10 degrees with 107 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 106,106.25,106.5,…1011 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table) or custom. Default is allm.

  9. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  10. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  11. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Viewing output results: output_*.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_*.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_C_D_E_F_G, where

A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
B = Lepton_type: tau is for tau leptons & muon is for muons.
C = idepth: depth of water layer, in km.
D = Neutrino (or anti-neutrino) cross-section model.
E = Charged lepton photonuclear energy loss model.
F = Energy loss type: can be stochastic or continuous.
G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

Neutrino/Anti-Neutrino Cross-Section Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 81, 114012

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 81, 114012

CTEQ18-NLO

Phys. Rev. D 103, 014013, Phys. Rev. D 81, 114012

Connolly, Thorne, Waters (CTW)

Phys. Rev. D 83, 113009

nCTEQ15

Phys. Rev. D 93, 085037, Phys. Rev. D 81, 114012

User Defined

See nuPyProp tutorial repository

Charged Lepton Photonuclear Energy Loss Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 63, 094020

Bezrukov-Bugaev (BB)

Yad. Fiz. 33, 1195, Phys. Rev. D 63, 094020

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 63, 094020

Capella, Kaidalov, Merino, Tran (CKMT)

Eur. Phys. J. C 10, 153 Phys. Rev. D 63, 094020

User Defined

See nuPyProp tutorial repository

Code Execution Timing Tables

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

τ

Stochastic

107

1-35

108

1.07*, 0.26***

τ

Continuous

107

1-35

108

0.88*

τ

Stochastic

108

1-35

108

6.18*, 1.53***

τ

Continuous

108

1-35

108

5.51*

τ

Stochastic

109

1-35

108

27.96*, 5.08***

τ

Continuous

109

1-35

108

19.11*

τ

Stochastic

1010

1-35

108

49.80*, 12.43***

τ

Continuous

1010

1-35

108

35.59*

τ

Stochastic

1011

1-35

108

12.73***

τ

Continuous

1011

1-35

108

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

μ

Stochastic

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

0.95*

μ

Stochastic

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

3.19*

μ

Stochastic

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

5.17*

μ

Stochastic

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

111.77**

μ

Continuous

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

7.42*

μ

Stochastic

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

98.17*

μ

Continuous

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

9.76*

μ

Stochastic

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.

  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.

  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.

  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.

  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.

  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: sudo apt-get install gfortran

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: brew install gcc

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nupyprop-0.1.7.post114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post114-cp39-cp39-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nupyprop-0.1.7.post114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post114-cp38-cp38-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nupyprop-0.1.7.post114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post114-cp37-cp37m-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nupyprop-0.1.7.post114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post114-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f47d27868849003aad802d376910e0d6d924810ad5348d8d7cca2794b8bebe6c
MD5 c54d06e3fb0f4ec84af8ecf3f445dd23
BLAKE2b-256 c35af3578ceac4997e56bbc329e562964e0c94dfe1c7b4084935b823a8ba0055

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post114-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post114-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post114-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 49cf0d09dcdab245503e399d8a3838d6d99ae5f45292295322bab79c06656849
MD5 4451abadf2ee541cf693955f6672cc47
BLAKE2b-256 3fd2e4c5a783a63cb9c5c09d9cc7c1eccb345af3498f4d8aee5fd0a3d34c1723

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post114-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28a442dd38aaccaf81ec0fcccb1c202faada6c752fecf60d625b503883502c78
MD5 5fa921b248c07d12b0d4316a4b32d878
BLAKE2b-256 1e6f2a77b36dba83ad5bad2268a2ec4d7ad24cbadf8a910a8c0deb3ab60fd409

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post114-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post114-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post114-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2eaf0dbfda838045dbc6c3ce9434cbf0670b9210afcb9149bce9558c53f5544a
MD5 d8cd46bd31249ecb57ec2f7f3305bc82
BLAKE2b-256 50c38c88938c6358e6016a35e08267436212e043ccb2b227878a83ecf404cfeb

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post114-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 18541a2b7d38927aba209e15c42121cc521241cb6fb76c22e38430252c72fde0
MD5 00255902dfe7e6372bc9164516194cda
BLAKE2b-256 eba89d33332b9a7f373d327e509ad3b31bb0d026203406b0aa1a854c1069c06d

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post114-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post114-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post114-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8d070eb4057f71427770fc9562db057dc153a013d903be1ea57c37f29a13e0c
MD5 3569b9cbc19793aa22839bf9fe1d321d
BLAKE2b-256 ae2c97d285c5b3c61f41d3b879ac33d2171d1f8249dc46349795a74b85a8f757

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page