Skip to main content

A simulator for neutrino propagation through the earth.

Project description

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial repository for visualizing output from the code and creating user-defined models.

Installation

with pip

python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 107 GeV neutrinos at 10 degrees with 107 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 106,106.25,106.5,…1011 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table) or custom. Default is allm.

  9. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  10. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  11. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Viewing output results: output_*.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_*.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_C_D_E_F_G, where

A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
B = Lepton_type: tau is for tau leptons & muon is for muons.
C = idepth: depth of water layer, in km.
D = Neutrino (or anti-neutrino) cross-section model.
E = Charged lepton photonuclear energy loss model.
F = Energy loss type: can be stochastic or continuous.
G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

Neutrino/Anti-Neutrino Cross-Section Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 81, 114012

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 81, 114012

CTEQ18-NLO

Phys. Rev. D 103, 014013, Phys. Rev. D 81, 114012

Connolly, Thorne, Waters (CTW)

Phys. Rev. D 83, 113009

nCTEQ15

Phys. Rev. D 93, 085037, Phys. Rev. D 81, 114012

User Defined

See nuPyProp tutorial repository

Charged Lepton Photonuclear Energy Loss Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 63, 094020

Bezrukov-Bugaev (BB)

Yad. Fiz. 33, 1195, Phys. Rev. D 63, 094020

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 63, 094020

Capella, Kaidalov, Merino, Tran (CKMT)

Eur. Phys. J. C 10, 153 Phys. Rev. D 63, 094020

User Defined

See nuPyProp tutorial repository

Code Execution Timing Tables

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

τ

Stochastic

107

1-35

108

1.07*, 0.26***

τ

Continuous

107

1-35

108

0.88*

τ

Stochastic

108

1-35

108

6.18*, 1.53***

τ

Continuous

108

1-35

108

5.51*

τ

Stochastic

109

1-35

108

27.96*, 5.08***

τ

Continuous

109

1-35

108

19.11*

τ

Stochastic

1010

1-35

108

49.80*, 12.43***

τ

Continuous

1010

1-35

108

35.59*

τ

Stochastic

1011

1-35

108

12.73***

τ

Continuous

1011

1-35

108

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

μ

Stochastic

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

0.95*

μ

Stochastic

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

3.19*

μ

Stochastic

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

5.17*

μ

Stochastic

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

111.77**

μ

Continuous

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

7.42*

μ

Stochastic

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

98.17*

μ

Continuous

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

9.76*

μ

Stochastic

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.

  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.

  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.

  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.

  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.

  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: sudo apt-get install gfortran

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: brew install gcc

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nupyprop-0.1.7.post117-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post117-cp39-cp39-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nupyprop-0.1.7.post117-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post117-cp38-cp38-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nupyprop-0.1.7.post117-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post117-cp37-cp37m-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nupyprop-0.1.7.post117-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post117-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ac54878bd235e916bf6c11390b1f9ff2aca2171d102014d37d3d70fd4be11f4
MD5 00ab75d0bdfab03ca52adfe6029e1a0e
BLAKE2b-256 e344646c3dd53865241f249b13ed46ab723c1d4ccbecc187f2b604d8aea1614f

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post117-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post117-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post117-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8e6719b2815a79b678e713775a162c8b245ed547a281345c975f756cabea4f55
MD5 e60f6027df31fd9bbf6307eabfe47176
BLAKE2b-256 fedde353b04c332da13e207a93d599b56876eeb68f0322e8bc3b993571a5090d

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post117-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post117-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef7dda24436af8a02262bb2dec6adb84f50da68507e77a659c7a5d99a50dedc1
MD5 5103f95dd9e073515227ff928e4bbeaf
BLAKE2b-256 31fbad7faa71f34f35578393af29935461d62fbacb347c01f15b85ce941c8f4a

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post117-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post117-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post117-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 65d0be05a66c27cf4d18609da2b6bec4601aa51130a1cd88bf17f97e1c5a7eff
MD5 00ee2cb3bc4b4792667b8aee21392490
BLAKE2b-256 2aff3f8eaa008872d38fbfc945d1fb8efe8309794b88606c60d3fff6c5a77f30

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post117-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post117-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75488e040c4a8c591b66e59ad9644bf72be5d73b410f9e3cf0e7f87aa1c80a52
MD5 97214d23a04ccfa187b71a89bd830438
BLAKE2b-256 9125107afb43e2b4ec60d42100b0c366bd11cf0b30585008b1165fe9205ccbb0

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post117-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post117-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post117-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7165b93351ba881069951b5115a09065530c3e1d700f3d624ae85f5bbaf6a7f7
MD5 35607a486dbd55529f810e5a447130de
BLAKE2b-256 f2c8d5c8ad81ce73589895f759d1b01f3a2fc582c03a442b27cc98c189031ceb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page