Skip to main content

A simulator for neutrino propagation through the earth.

Project description

Propagate neutrinos through the earth.

A python package and command line utility, including fortran for performance with openMP.

Documentation (WIP): https://nupyprop.readthedocs.io/en/latest/

Note: While the documentation is currently WIP, users and developers should consult the nuPyProp tutorial repository for visualizing output from the code and creating user-defined models.

Installation

with pip

python3 -m pip install nupyprop

with conda

We recommend installing nupyprop into a conda environment like so. In this example the name of the environment is “nupyprop”

conda create -n nupyprop -c conda-forge -c nuspacesim nupyprop
conda activate nupyprop

Usage

nupyprop --help

Example for running tau propagation for 107 GeV neutrinos at 10 degrees with 107 neutrinos injected with stochastic energy loss & with all other parameters as defaults:

nupyprop -e 7 -a 10 -t stochastic -s 1e7

Run parameters are defined in run.py. Different switches are described as follows:

  1. -e or --energy: incoming neutrino energy in log_10(GeV). Works for single energy or multiple energies. For multiple energies, separate energies with commas eg. 6,7,8,9,10,11. Default energies are 106,106.25,106.5,…1011 GeV.

  2. -a or --angle: slant Earth angles in degrees. Works for single angle or multiple angles. For multiple angles, separate angles with commas eg. 1,3,5,7,10. Default angles are 1->42 degrees, in steps of 1 degree.

  3. -i or --idepth: depth of ice/water in km. Default value is 4 km.

  4. -cl or --charged_lepton: flavor of charged lepton used to propagate. Can be either muon or tau. Default is tau.

  5. -n or --nu_type: type of neutrino matter. Can be either neutrino or anti-neutrino. Default is neutrino.

  6. -t or --energy_loss: energy loss type for lepton - can be stochastic or continuous. Default is stochastic.

  7. -x or --xc_model: neutrino/anti-neutrino cross-section model used. Can be from the pre-defined set of models (see xc-table) or custom. Default is ct18nlo.

  8. -p or --pn_model: photonuclear interaction energy loss model used. Can be from the pre-defined set of models (see pn-table) or custom. Default is allm.

  9. -f or --fac_nu: rescaling factor for BSM cross-sections. Default is 1.

  10. -s or --stats: statistics or no. of injected neutrinos. Default is 1e7 neutrinos.

  11. -htc or --htc_mode: High throughput computing mode. If set to yes, the code will be optimized to run in high throughput computing mode. Default is no.

Note: This program uses OpenMP for propagating the huge number of neutrinos injected. For this purpose, the code will use all the threads available in your processor by default. To control the number of threads used for running the code, use export OMP_NUM_THREADS=x, where x is the number of threads you want the code to run with.

Viewing output results: output_*.h5 will contain the results of the code after it has finished running. In the terminal, run vitables (optional dependency) and open the output_*.h5 file to view the output results.

output_*.h5 naming convention is as follows: output_A_B_Ckm_D_E_F_G, where

A = Neutrino type: nu is for neutrino & anu is for anti-neutrino.
B = Charged lepton type: tau is for tau leptons & muon is for muons.
C = idepth: depth of water layer (in km).
D = Neutrino (or anti-neutrino) cross-section model.
E = Charged lepton photonuclear energy loss model.
F = Energy loss type: can be stochastic or continuous.
G = Statistics (ie. no. of neutrinos/anti-neutrinos injected).

Model Tables

Neutrino/Anti-Neutrino Cross-Section Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 96, 043003

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 96, 043003

CTEQ18-NLO

Phys. Rev. D 103, 014013, Phys. Rev. D 81, 114012

Connolly, Thorne, Waters (CTW)

Phys. Rev. D 83, 113009

nCTEQ15

Phys. Rev. D 93, 085037, Phys. Rev. D 81, 114012

User Defined

See nuPyProp tutorial repository

Charged Lepton Photonuclear Energy Loss Model

Reference

Abramowicz, Levin, Levy, Maor (ALLM)

hep-ph/9712415, Phys. Rev. D 63, 094020

Bezrukov-Bugaev (BB)

Yad. Fiz. 33, 1195, Phys. Rev. D 63, 094020

Block, Durand, Ha, McKay (BDHM)

Phys. Rev. D 89, 094027, Phys. Rev. D 63, 094020

Capella, Kaidalov, Merino, Tran (CKMT)

Eur. Phys. J. C 10, 153 Phys. Rev. D 63, 094020

User Defined

See nuPyProp tutorial repository

Code Execution Timing Tables

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

τ

Stochastic

107

1-35

108

1.07*, 0.26***

τ

Continuous

107

1-35

108

0.88*

τ

Stochastic

108

1-35

108

6.18*, 1.53***

τ

Continuous

108

1-35

108

5.51*

τ

Stochastic

109

1-35

108

27.96*, 5.08***

τ

Continuous

109

1-35

108

19.11*

τ

Stochastic

1010

1-35

108

49.80*, 12.43***

τ

Continuous

1010

1-35

108

35.59*

τ

Stochastic

1011

1-35

108

12.73***

τ

Continuous

1011

1-35

108

Charged Lepton

Energy Loss Type

E|nu| [GeV]

Angles

N|nu|;;in

Time (hrs)

μ

Stochastic

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

106

1,2,3,5,7,10,12,15,17,20,25,30,35

108

0.95*

μ

Stochastic

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

107

1,2,3,5,7,10,12,15,17,20,25,30,35

108

3.19*

μ

Stochastic

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

108

1,2,3,5,7,10,12,15,17,20,25,30,35

108

5.17*

μ

Stochastic

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

111.77**

μ

Continuous

109

1,2,3,5,7,10,12,15,17,20,25,30,35

108

7.42*

μ

Stochastic

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

98.17*

μ

Continuous

1010

1,2,3,5,7,10,12,15,17,20,25,30,35

108

9.76*

μ

Stochastic

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

μ

Continuous

1011

1,2,3,5,7,10,12,15,17,20,25,30,35

108

* - Intel Core i7-8750H; 6 cores & 12 threads. ** - Intel Core i5-10210; 4 cores & 8 threads. *** - UIowa Argon cluster; 56 cores.

For debugging/development: The correct order to look at the code is in the following order:

  1. data.py: contains functions for reading/writing from/to hdf5 files.

  2. geometry.py: contains the Earth geometry modules (including PREM) for use with python/fortran.

  3. models.py: contains neutrino cross-section & charged lepton energy loss model templates.

  4. propagate.f90: heart of the code; contains fortran modules to interpolate between geometry variables, cross-sections, energy loss parameters & propagate neutrinos and charged leptons through the Earth.

  5. main.py: forms the main skeleton of the code; propagates the neutrinos and charged leptons, and calculates the p_exit and collects outgoing lepton energies.

  6. run.py: contains all the run parameters and variables needed for all the other .py files.

Developing the code on Ubuntu

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip).

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: sudo apt-get install gfortran

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Developing the code on MacOS

These notes should help developers of this code build and install the package locally using a pep518 compliant build system (pip). Currently we do not support the default system python3 on MacOS which is out of date and missing critical functionality. Use the homebrew python instead, or a virtualenv, or a conda environment.

  1. Install the non-pypi required dependencies as described for users above.

  2. Install a fortran compiler. ex: brew install gcc

  3. git clone the source code: git clone git@github.com:NuSpaceSim/nupyprop.git

  4. cd nupyprop

  5. build and install the package in ‘editable’ mode python3 -m pip install -e .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nupyprop-0.1.7.post125-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post125-cp39-cp39-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

nupyprop-0.1.7.post125-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post125-cp38-cp38-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

nupyprop-0.1.7.post125-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

nupyprop-0.1.7.post125-cp37-cp37m-macosx_10_9_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file nupyprop-0.1.7.post125-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post125-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e77b4bee52d9b2fb203690c4b6dad43193547420f1ea3acdd73224398f14c608
MD5 01241f8f148c18beb62194fbc433be73
BLAKE2b-256 5af7a7938c62412b0d0f03738cf46ac2fc9696745976688761e28a2188110929

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post125-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post125-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post125-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d1ee24c6cb6efe5df8035fb136983cf49e204a405123513f920fdcf5da40a1dc
MD5 69a366134e21b76976beb5d8b651e32c
BLAKE2b-256 2b0782548a5a4ba1746125132b8131494281c0339e3afc2ae5924b39b99ae7a8

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post125-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post125-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 da332c9a080aa8fb6a6533385c4412b11d2f61c26285d86ef097f92a35687250
MD5 225ec242c73577383c29bc2f41cb5ffe
BLAKE2b-256 0b858bcc8dd17d5ce0ab6b6c595752ec2ab5106c90359a895d245a590252980b

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post125-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post125-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post125-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3df5f0a025010272b7d4b432eeaf294615b0ac8f92fe6a9fd8ad88ac951c037
MD5 a67eec6f851b62a914758edefbf3d2f3
BLAKE2b-256 09f14062fa5f2ad9930692a4464e9a3896bfbed010fefa933f0c5bc529eaa325

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post125-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nupyprop-0.1.7.post125-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd85395865ab242b759158fcf5c55e50ce95c912d914e4887fc850181a7d4f53
MD5 9ba1f04fd611e0649b785bee3695b73c
BLAKE2b-256 4b02c76bcd1f8e7b6ed1f6a639cccf9405af489685741e8ea11b4177584f7939

See more details on using hashes here.

File details

Details for the file nupyprop-0.1.7.post125-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: nupyprop-0.1.7.post125-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 16.5 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for nupyprop-0.1.7.post125-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87dcf76c2195fae0ae9101b375b8a7600a4b3053dfe1032838af315592a2ac0f
MD5 0bdeafdf16a2db44447cfa47e2126856
BLAKE2b-256 c15778a4248daa03b4108553f292a6dad41062987c5328d8a86f4c3163f44bd6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page