Skip to main content

A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays.

Project description

NuRadioMC/NuRadioReco

A Monte Carlo simulation package for radio neutrino detectors and reconstruction framework for radio detectors of high-energy neutrinos and cosmic-rays

The documentation can be found at https://nu-radio.github.io/NuRadioMC/main.html Please visit the wiki at https://github.com/nu-radio/NuRadioMC/wiki for additional documentation.

If you want to keep up to date, consider signing up to the following email lists:

If you're using NuRadioMC for your research, please cite

and for the detector simulation and event reconstruction part

NuRadioMC is continuously improved and new features are being added. The following papers document new features (in reverse chronological order):

  • B. Oeyen, I. Plaisier, A. Nelles, C. Glaser, T. Winchen, "Effects of firn ice models on radio neutrino simulations using a RadioPropa ray tracer", PoS(ICRC2021)1027 (adds numerical ray tracer RadioPropa to allow signal propagation in arbitrary 3D index-of-refraction profiles)

  • C. Glaser D. García-Fernández and A. Nelles, "Prospects for neutrino-flavor physics with in-ice radio detectors", PoS(ICRC2021)1231 (generalizes NuRadioMC to simulate the radio emission from any number of in-ice showers including their interference)

  • D. García-Fernández, C. Glaser and A. Nelles, “The signatures of secondary leptons in radio-neutrino detectors in ice”, Phys. Rev. D 102, 083011, arXiv:2003.13442 (addition of secondary interactions of muons and taus)

If you would like to contribute, please contact @cg-laser or @anelles for permissions to work on NuRadioMC. We work with pull requests only that can be merged after review. Also please visit https://github.com/nu-radio/NuRadioMC/blob/master/CONTRIBUTING.md

NuRadioMC is used in an increasing number of studies. To get an overview for what NuRadioMC can be used for, please have a look at the following publications or see here:

  • S. Stjärnholm, O. Ericsson and C. Glaser, "Neutrino direction and flavor reconstruction from radio detector data using deep convolutional neural networks", PoS(ICRC2021)1055
  • S. Hallmann et al., "Sensitivity studies for the IceCube-Gen2 radio array", PoS(ICRC2021)1183
  • Y. Pan, "A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)", PoS(ICRC2021)1157
  • A. Anker et al., "A novel trigger based on neural networks for radio neutrino detectors", PoS(ICRC2021)1074
  • L. Zhao et al., "Polarization Reconstruction of Cosmic Rays with the ARIANNA Neutrino Radio Detector", PoS(ICRC2021)1156
  • J. Beise et al. "Development of an in-situ calibration device of firn properties for Askaryan neutrino detectors", PoS(ICRC2021)1069
  • I. Plaisier et al., "Direction reconstruction for the Radio Neutrino Observatory Greenland", PoS(ICRC2021)1026
  • C. Welling et al., "Energy reconstruction with the Radio Neutrino Observatory Greenland (RNO-G)", PoS(ICRC2021)1033
  • C. Glaser, S. McAleer, P. Baldi and S.W. Barwick, "Deep learning reconstruction of the neutrino energy with a shallow Askaryan detector", PoS(ICRC2021)1051
  • S. Barwick et al., "Capabilities of ARIANNA: Neutrino Pointing Resolution and Implications for Future Ultra-high Energy Neutrino Astronomy", PoS(ICRC2021)1151
  • S. Barwick et al., "Science case and detector concept for ARIANNA high energy neutrino telescope at Moore's Bay, Antarctica", PoS(ICRC2021)1190
  • RNO-G collaboration, "Reconstructing the neutrino energy for in-ice radio detectors : A study for the Radio Neutrino Observatory Greenland (RNO-G)", arXiv:2107.02604
  • Ice-Cube-Gen2 collaboration, "IceCube-Gen2: The Window to the Extreme Universe", J.Phys.G 48 (2021) 6, 060501, arXiv:2008.04323
  • C. Welling et al., "Reconstructing non-repeating radio pulses with Information Field Theory", JCAP 04 (2021) 071, arXiv:2102.00258
  • C. Glaser, S. Barwick, "An improved trigger for Askaryan radio detectors", JINST 16 (2021) 05, T05001, arXiv:2011.12997
  • RNO-G collaboration, "Design and Sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G)", JINST 16 (2021) 03, P03025 arXiv:2010.12279
  • ARIANNA collaboration, "Probing the angular and polarization reconstruction of the ARIANNA detector at the South Pole", JINST 15 (2020) 09, P09039, arXiv:2006.03027

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

NuRadioMC-2.1.5.tar.gz (15.9 MB view hashes)

Uploaded Source

Built Distribution

NuRadioMC-2.1.5-py3-none-any.whl (16.3 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page