Skip to main content

Low-level functions for evaluating and manipulating polynomials (Python bindings)

Project description

Low-level functions for evaluating and manipulating polynomials.

Examples

The vector of coefficients for the polynomial f(x, y) = 3 x y + x^2 is [0, 3, 0, 1, 0, 0].

With eval() we can evaluate this polynomial:

import nutils_poly
import numpy

coeffs = numpy.array([0, 3, 0, 1, 0, 0], dtype=float)
# array of three `x` and `y` pairs (last axis)
values = numpy.array([[1, 0], [1, 1], [2, 3]], dtype=float)
numpy.testing.assert_allclose(nutils_poly.eval(coeffs, values), [1, 4, 22])

PartialDerivPlan::apply() computes the coefficients for the partial derivative of a polynomial to one of the variables. The partial derivative of f to x, the first variable, is ∂_x f(x, y) = 3 y + 2 x (coefficients: [3, 2, 0]):

import nutils_poly
import numpy

coeffs = numpy.array([0, 3, 0, 1, 0, 0], dtype=float)
pd = nutils_poly.PartialDerivPlan(
    2, # number of variables
    2, # degree
    0, # variable to compute the partial derivative to
)
numpy.testing.assert_allclose(pd(coeffs), [3, 2, 0])

Further reading

This package is a Python interface for the Rust crate nutils-poly using PyO3.

This package is part of the Nutils project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nutils_poly-1.0.1.tar.gz (15.7 kB view details)

Uploaded Source

Built Distributions

nutils_poly-1.0.1-cp38-abi3-win_amd64.whl (213.5 kB view details)

Uploaded CPython 3.8+ Windows x86-64

nutils_poly-1.0.1-cp38-abi3-win32.whl (202.5 kB view details)

Uploaded CPython 3.8+ Windows x86

nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8+ musllinux: musl 1.1+ x86-64

nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_aarch64.whl (1.3 MB view details)

Uploaded CPython 3.8+ musllinux: musl 1.1+ ARM64

nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

nutils_poly-1.0.1-cp38-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (643.5 kB view details)

Uploaded CPython 3.8+ macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

File details

Details for the file nutils_poly-1.0.1.tar.gz.

File metadata

  • Download URL: nutils_poly-1.0.1.tar.gz
  • Upload date:
  • Size: 15.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.2

File hashes

Hashes for nutils_poly-1.0.1.tar.gz
Algorithm Hash digest
SHA256 f30b6620e831e5820e01d30af9e30de50391b0026b7c54855c4be7b072bb6880
MD5 dbcfe829321f5da3d3a8aa413cac9dd8
BLAKE2b-256 1c9cae9aeb0aa1ef8fd7159fe522c2c2bf3609834d2e122ef14aae172b1ce375

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 c5118f1df97856c1e462f0c3ab4f1e960447b88900ed2975918c7e67996f448a
MD5 0cbd59cf551fd13f832c3ac09d4cb095
BLAKE2b-256 0554e01764cc588650387061e75f413ef156b2da2574bcc3e75b2cbec0c5cf33

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-win32.whl.

File metadata

  • Download URL: nutils_poly-1.0.1-cp38-abi3-win32.whl
  • Upload date:
  • Size: 202.5 kB
  • Tags: CPython 3.8+, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.2

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-win32.whl
Algorithm Hash digest
SHA256 b688de6b21d23d013061c3c20b638ef42a27467dcc9d211f9834b5e0a3d60d37
MD5 5b77b0b0b4831b4986fa21928fc9e518
BLAKE2b-256 0ef9f299233ca0685f13868ad0da1a642596119ca391def460bd344aa6028804

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c9f43689335b2ef12048b0964725b31426e3f460532ad5df87e798567e0f99b2
MD5 12501873160630e2cbf6db5b7119de94
BLAKE2b-256 932a733600c5fb2d2cf4695223096158690a8af8d4bfaa971f6e0271e73af841

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e8eef88742e8052a56b55811aa79c4858fcb2c001ea89c51d9c7db7d5b4427f2
MD5 2ee8207ae837a740892b891fdcf19df8
BLAKE2b-256 0d7946cb5d6c1b6b576241ab0192a760ca78eefa1aa9705829c241bb4889c1f7

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6630fc5d4373eaf888e9e09697545e4e4f182a728f27657cc5882956b06b5317
MD5 e26489fb73be3e7d2cc7d4f6209423f2
BLAKE2b-256 dec6a9d27c6f8b7ea7c675cdb049e2b9f96844a1d091bfb355b011ca65679846

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 538c841d9ac53ee48bc32376fa905feac1742907b5c91303d29ff300081f6a32
MD5 486a5b86aaed68ccfe5870be809e589d
BLAKE2b-256 bb5f0439024d34727a5e1d48d66879c0f6d41679bd8c39111a7dd4fb59df7baa

See more details on using hashes here.

File details

Details for the file nutils_poly-1.0.1-cp38-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for nutils_poly-1.0.1-cp38-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 efe99a301e4eb637c36ad4be76c686080c24fce57eeaf9d3789ff92d14cb6550
MD5 e3fcf80946aba4809c7347ebcdc49eb1
BLAKE2b-256 74ecc2a4e6cb7b90bea678f9b33be6aaad72f610f894a60d0790b78d3e1eed33

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page