Skip to main content

Downloads Australian NVCL datasets

Project description

nvcl_kit

A simple module used to read Australian NVCL borehole data

Brief Introduction: how to extract NVCL borehole data

1. Instantiate class

from nvcl_kit.reader import NVCLReader 
from types import SimpleNamespace
param = SimpleNamespace()

# URL of the GeoSciML v4.1 BoreHoleView Web Feature Service
param.WFS_URL = "http://blah.blah.blah/nvcl/geoserver/wfs"

# URL of NVCL service
param.NVCL_URL = "https://blah.blah.blah/nvcl/NVCLDataServices"

# Optional bounding box to search for boreholes using WFS, default units are EPSG:4283 degrees
param.BBOX = {"west": 132.76, "south": -28.44, "east": 134.39, "north": -26.87 }

# Optional maximum number of boreholes to fetch, default is no limit
param.MAX_BOREHOLES = 20

# Instantiate class and search for boreholes
reader = NVCLReader(param)

2. Check if 'wfs' is not 'None' to see if this instance initialised properly

if not reader.wfs:
    print("ERROR!")

3. Call get_boreholes_list() to get list of WFS borehole data for NVCL boreholes

# Returns a list of python dictionaries
# Each dict has fields from GeoSciML v4.1 BoreholeView
bh_list = reader.get_boreholes_list()

4. Call get_nvcl_id_list() to get a list of NVCL borehole ids

nvcl_id_list = reader.get_nvcl_id_list()

5. Using an NVCL borehole id from previous step, call get_imagelog_data() to get the NVCL log ids

# Get list of NVCL log ids
nvcl_id_list = reader.get_nvcl_id_list()

# Get NVCL log id for first borehole in list
nvcl_id = nvcl_id_list[0]

# Get image log data for first borehole
imagelog_data_list = reader.get_imagelog_data(nvcl_id)
for ild in imagelog_data_list:
    print(ild.log_id,
          ild.log_name,
          ild.log_type,
          ild.algorithmout_id)

6. Using image log data, call get_borehole_data() to get borehole data

# Analysis class has 2 parts:
# 1. Min1,2,3 = 1st, 2nd, 3rd most common mineral
#    OR Grp1,2,3 = 1st, 2nd, 3rd most common group of minerals
# 2. uTSAV = visible light, uTSAS = shortwave IR, uTSAT = thermal IR
#
# These combine to give us a class name such as 'Grp1 uTSAS'
#
# Here we extract data for log type '1' and 'Grp1 uTSAS'
HEIGHT_RESOLUTION = 20.0
ANALYSIS_CLASS = 'Grp1 uTSAS'
LOG_TYPE = '1'
for ild in imagelog_data_list:
    if ild.log_type == LOG_TYPE and ild.log_name == ANALYSIS_CLASS:
        bh_data = reader.get_borehole_data(ild.log_id, HEIGHT_RESOLUTION, ANALYSIS_CLASS)
        # Print out the colour, mineral and class name at each depth
        for depth in bh_data:
            print("At ", depth, "my class, mineral, colour is", bh_data[depth].className,
                  bh_data[depth].classText, bh_data[depth].colour)

7. Using the NVCL ids from Step 5, you can also call get_spectrallog_data() and get_profilometer_data()

spectrallog_data_list = reader.get_spectrallog_data(nvcl_id)
for sld in spectrallog_data_list:
    print(sld.log_id,
          sld.log_name,
          sld.wavelength_units,
          sld.sample_count,
          sld.script,
          sld.script_raw,
          sld.wavelengths)

profilometer_data_list = reader.get_profilometer_data(nvcl_id)
for pdl in profilometer_data_list:
    print(pdl.log_id,
          pdl.log_name,
          pdl.max_val,
          pdl.min_val,
          pdl.floats_per_sample,
          pdl.sample_count)

8. Option: get a list of dataset ids

datasetid_list = reader.get_datasetid_list(nvcl_id)

9. Option: Get a list of datasets

dataset_list = reader.get_dataset_list(nvcl_id)
for ds in dataset_list:
    print(ds.dataset_id,
          ds.dataset_name,
          ds.borehole_uri,
          ds.tray_id,
          ds.section_id,
          ds.domain_id)

10. Using an element from 'datasetid_list' in Step 8 or 'ds.dataset_id' from Step 9, can retrieve log data

log_list = reader.get_logs_scalar(ds.dataset_id)
for log in log_list:
    print(log.log_id,
          log.log_name,
          log.is_public,
          log.log_type,
          log..algrithm_id)
log_list = reader.get_logs_mosaic(ds.dataset_id)
for log in log_list:
    print(log.log_id,
          log.log_name,
          log.sample_count)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvcl_kit-0.1.13.tar.gz (15.0 kB view details)

Uploaded Source

Built Distribution

nvcl_kit-0.1.13-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file nvcl_kit-0.1.13.tar.gz.

File metadata

  • Download URL: nvcl_kit-0.1.13.tar.gz
  • Upload date:
  • Size: 15.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for nvcl_kit-0.1.13.tar.gz
Algorithm Hash digest
SHA256 f14fc8e4bd6e363eea538a10ecc11214366317476d566af8bd7b6afbf3808c26
MD5 01c91e3abad949a9c0ac51abd8dd91f7
BLAKE2b-256 f99292cca41d9df63b85165f50217c53785421c67645d2d576271ff269c4ae98

See more details on using hashes here.

File details

Details for the file nvcl_kit-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: nvcl_kit-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 11.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for nvcl_kit-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 12be352eb33beffb7735059af16550d0a73c8342bc54dc7ee7fcbf7af808868e
MD5 f22273c12004fb872d23f90f766a4a74
BLAKE2b-256 60afd088d2b179421ea4acb172444abdd0e05ee5cfa977f72818b7efda429982

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page