Skip to main content

Downloads Australian NVCL datasets

Project description

nvcl_kit

A simple module used to read Australian NVCL borehole data

Brief Introduction: How to extract NVCL borehole data

NB: There is also a rough demonstration script: 'demo.py'

1. Instantiate class

from nvcl_kit.reader import NVCLReader 
from types import SimpleNamespace
param = SimpleNamespace()

# URL of the GeoSciML v4.1 BoreHoleView Web Feature Service
param.WFS_URL = "http://blah.blah.blah/nvcl/geoserver/wfs"

# URL of NVCL service
param.NVCL_URL = "https://blah.blah.blah/nvcl/NVCLDataServices"

# Optional bounding box to search for boreholes using WFS, default units are EPSG:4283 degrees
param.BBOX = {"west": 132.76, "south": -28.44, "east": 134.39, "north": -26.87 }

# Optional maximum number of boreholes to fetch, default is no limit
param.MAX_BOREHOLES = 20

# Instantiate class and search for boreholes
reader = NVCLReader(param)

2. Check if 'wfs' is not 'None' to see if this instance initialised properly

if not reader.wfs:
    print("ERROR!")

3. Call get_boreholes_list() to get list of WFS borehole data for NVCL boreholes

# Returns a list of python dictionaries
# Each dict has fields from GeoSciML v4.1 BoreholeView
bh_list = reader.get_boreholes_list()

4. Call get_nvcl_id_list() to get a list of NVCL borehole ids

nvcl_id_list = reader.get_nvcl_id_list()

5. Using an NVCL borehole id from previous step, call get_imagelog_data() to get the NVCL log ids

# Get list of NVCL log ids
nvcl_id_list = reader.get_nvcl_id_list()

# Get NVCL log id for first borehole in list
nvcl_id = nvcl_id_list[0]

# Get image log data for first borehole
imagelog_data_list = reader.get_imagelog_data(nvcl_id)
for ild in imagelog_data_list:
    print(ild.log_id,
          ild.log_name,
          ild.log_type,
          ild.algorithmout_id)

6. Using image log data, call get_borehole_data() to get borehole data

# Analysis class has 2 parts:
# 1. Min1,2,3 = 1st, 2nd, 3rd most common mineral
#    OR Grp1,2,3 = 1st, 2nd, 3rd most common group of minerals
# 2. uTSAV = visible light, uTSAS = shortwave IR, uTSAT = thermal IR
#
# These combine to give us a class name such as 'Grp1 uTSAS'
#
# Here we extract data for log type '1' and 'Grp1 uTSAS'
HEIGHT_RESOLUTION = 20.0
ANALYSIS_CLASS = 'Grp1 uTSAS'
LOG_TYPE = '1'
for ild in imagelog_data_list:
    if ild.log_type == LOG_TYPE and ild.log_name == ANALYSIS_CLASS:
        bh_data = reader.get_borehole_data(ild.log_id, HEIGHT_RESOLUTION, ANALYSIS_CLASS)
        # Print out the colour, mineral and class name at each depth
        for depth in bh_data:
            print("At ", depth, "my class, mineral, colour is", bh_data[depth].className,
                  bh_data[depth].classText, bh_data[depth].colour)

7. Using the NVCL ids from Step 5, you can also call get_spectrallog_data() and get_profilometer_data()

spectrallog_data_list = reader.get_spectrallog_data(nvcl_id)
for sld in spectrallog_data_list:
    print(sld.log_id,
          sld.log_name,
          sld.wavelength_units,
          sld.sample_count,
          sld.script,
          sld.script_raw,
          sld.wavelengths)

profilometer_data_list = reader.get_profilometer_data(nvcl_id)
for pdl in profilometer_data_list:
    print(pdl.log_id,
          pdl.log_name,
          pdl.max_val,
          pdl.min_val,
          pdl.floats_per_sample,
          pdl.sample_count)

8. Option: get a list of dataset ids

datasetid_list = reader.get_datasetid_list(nvcl_id)

9. Option: Get a list of datasets

dataset_list = reader.get_dataset_list(nvcl_id)
for ds in dataset_list:
    print(ds.dataset_id,
          ds.dataset_name,
          ds.borehole_uri,
          ds.tray_id,
          ds.section_id,
          ds.domain_id)

10. Using an element from 'datasetid_list' in Step 8 or 'ds.dataset_id' from Step 9, can retrieve log data

# Scalar log data
log_list = reader.get_scalar_logs(ds.dataset_id)
for log in log_list:
    print(log.log_id,
          log.log_name,
          log.is_public,
          log.log_type,
          log.algorithm_id)
# Different types of image log data
ilog_list = reader.get_all_imglogs(ds.dataset_id)
ilog_list = reader.get_mosaic_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_imglogs(ds.dataset_id)
ilog_list = reader.get_imagery_imglogs(ds.dataset_id)

for ilog in ilog_list:
    print(ilog.log_id,
          ilog.log_name,
          ilog.sample_count)

**11. Using the scalar log ids, can get scalar data

# Scalar data in CSV format
log_id_list = [l.log_id for l in log_list]
data = reader.get_scalar_data(log_id_list)

# Sampled scalar data in JSON (or CSV) format
samples = reader.get_sampled_scalar_data(log.log_id,
                                         outputformat='json',
                                         startdepth=0,
                                         enddepth=2000,
                                         interval=100)

# A data plot in PNG
plot_data = reader.plot_scalar_png(log_id)

# Data plots in HTML, only plots the first 6 log ids
plot_data = reader.plot_scalars_html(log_id_list)

**12. Using the image log ids can produce images of NVCL cores

ilog_list = reader.get_mosaic_imglogs(ds.dataset_id)
for ilog in ilog_list:
    img = reader.get_mosaic_image(ilog.log_id)

ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
for ilog in ilog_list:
    img = reader.get_tray_thumb_html(ds.dataset_id, ilog.log_id)
    img = reader.get_tray_thumb_jpg(ilog.log_id)

# Use either 'get_tray_thumb_imglogs()' or 'get_tray_imglogs()'
ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_imglogs(ds.dataset_id)
for ilog in ilog_list:
    depth_list = reader.get_tray_depths(ilog.log_id)
    for depth in depth_list:
        print(depth.sample_no,
              depth.start_value,
              depth.end_value)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvcl_kit-0.1.16.tar.gz (19.7 kB view details)

Uploaded Source

Built Distribution

nvcl_kit-0.1.16-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file nvcl_kit-0.1.16.tar.gz.

File metadata

  • Download URL: nvcl_kit-0.1.16.tar.gz
  • Upload date:
  • Size: 19.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for nvcl_kit-0.1.16.tar.gz
Algorithm Hash digest
SHA256 1f2ebe9b4a377fc42c084937972bffb9505fecce51ed503dd4d9824897ca8d04
MD5 ca54371f7bbc44df4fbddaa4a0b32b55
BLAKE2b-256 ddfbcf989c91a8c90b48aabd8773afc3d03276c587814e8b13da744c378f6744

See more details on using hashes here.

File details

Details for the file nvcl_kit-0.1.16-py3-none-any.whl.

File metadata

  • Download URL: nvcl_kit-0.1.16-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.0 CPython/3.7.5

File hashes

Hashes for nvcl_kit-0.1.16-py3-none-any.whl
Algorithm Hash digest
SHA256 31d9fa8fdacc4f10436264074da4e8e0e65c5c11a32783de83899603c378ab36
MD5 86c78352963c8b16721c4d7526411c12
BLAKE2b-256 a67cab6ece1fbb56cb3844fa9a05496b0e0b5deb7520f50f8b0ef9dad831dbe0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page