Skip to main content

Downloads Australian NVCL datasets

Project description

nvcl_kit: A simple module used to read Australian NVCL borehole data

pipeline status coverage report

Brief Introduction: How to extract NVCL borehole data

NB: There is also a rough demonstration script: 'demo.py'

1. Instantiate class

from nvcl_kit.reader import NVCLReader 
from types import SimpleNamespace
param = SimpleNamespace()

# URL of the GeoSciML v4.1 BoreHoleView Web Feature Service
param.WFS_URL = "http://blah.blah.blah/nvcl/geoserver/wfs"

# URL of NVCL service
param.NVCL_URL = "https://blah.blah.blah/nvcl/NVCLDataServices"

# Optional bounding box to search for boreholes using WFS, default units are EPSG:4326 degrees
param.BBOX = {"west": 132.76, "south": -28.44, "east": 134.39, "north": -26.87 }

# Optional maximum number of boreholes to fetch, default is no limit
param.MAX_BOREHOLES = 20

# Instantiate class and search for boreholes
reader = NVCLReader(param)

2. Check if 'wfs' is not 'None' to see if this instance initialised properly

if not reader.wfs:
    print("ERROR!")

3. Call get_boreholes_list() to get list of WFS borehole data for NVCL boreholes

# Returns a list of python dictionaries
# Each dict has fields from GeoSciML v4.1 BoreholeView
bh_list = reader.get_boreholes_list()

4. Call get_nvcl_id_list() to get a list of NVCL borehole ids

nvcl_id_list = reader.get_nvcl_id_list()

5. Using an NVCL borehole id from previous step, call get_imagelog_data() to get the NVCL log ids

# Get list of NVCL log ids
nvcl_id_list = reader.get_nvcl_id_list()

# Get NVCL log id for first borehole in list
nvcl_id = nvcl_id_list[0]

# Get image log data for first borehole
imagelog_data_list = reader.get_imagelog_data(nvcl_id)
for ild in imagelog_data_list:
    print(ild.log_id,
          ild.log_name,
          ild.log_type,
          ild.algorithmout_id)

6. Using image log data, call get_borehole_data() to get borehole data

# Analysis class has 2 parts:
# 1. Min1,2,3 = 1st, 2nd, 3rd most common mineral
#    OR Grp1,2,3 = 1st, 2nd, 3rd most common group of minerals
# 2. uTSAV = visible light, uTSAS = shortwave IR, uTSAT = thermal IR
#
# These combine to give us a class name such as 'Grp1 uTSAS'
#
# Here we extract data for log type '1' and 'Grp1 uTSAS'
HEIGHT_RESOLUTION = 20.0
ANALYSIS_CLASS = 'Grp1 uTSAS'
LOG_TYPE = '1'
for ild in imagelog_data_list:
    if ild.log_type == LOG_TYPE and ild.log_name == ANALYSIS_CLASS:
        bh_data = reader.get_borehole_data(ild.log_id, HEIGHT_RESOLUTION, ANALYSIS_CLASS)
        # Print out the colour, mineral and class name at each depth
        for depth in bh_data:
            print("At ", depth, "my class, mineral, colour is", bh_data[depth].className,
                  bh_data[depth].classText, bh_data[depth].colour)

7. Using the NVCL ids from Step 5, you can also call get_spectrallog_data() and get_profilometer_data()

spectrallog_data_list = reader.get_spectrallog_data(nvcl_id)
for sld in spectrallog_data_list:
    print(sld.log_id,
          sld.log_name,
          sld.wavelength_units,
          sld.sample_count,
          sld.script,
          sld.script_raw,
          sld.wavelengths)

profilometer_data_list = reader.get_profilometer_data(nvcl_id)
for pdl in profilometer_data_list:
    print(pdl.log_id,
          pdl.log_name,
          pdl.max_val,
          pdl.min_val,
          pdl.floats_per_sample,
          pdl.sample_count)

8. Option: get a list of dataset ids

datasetid_list = reader.get_datasetid_list(nvcl_id)

9. Option: Get a list of datasets

dataset_list = reader.get_dataset_list(nvcl_id)
for ds in dataset_list:
    print(ds.dataset_id,
          ds.dataset_name,
          ds.borehole_uri,
          ds.tray_id,
          ds.section_id,
          ds.domain_id)

10. Using an element from 'datasetid_list' in Step 8 or 'ds.dataset_id' from Step 9, can retrieve log data

# Scalar log data
log_list = reader.get_scalar_logs(ds.dataset_id)
for log in log_list:
    print(log.log_id,
          log.log_name,
          log.is_public,
          log.log_type,
          log.algorithm_id)
# Different types of image log data
ilog_list = reader.get_all_imglogs(ds.dataset_id)
ilog_list = reader.get_mosaic_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_imglogs(ds.dataset_id)
ilog_list = reader.get_imagery_imglogs(ds.dataset_id)

for ilog in ilog_list:
    print(ilog.log_id,
          ilog.log_name,
          ilog.sample_count)

11. Using the scalar log ids, can get scalar data and plots of scalar data

# Scalar data in CSV format
log_id_list = [l.log_id for l in log_list]
data = reader.get_scalar_data(log_id_list)

# Sampled scalar data in JSON (or CSV) format
samples = reader.get_sampled_scalar_data(log.log_id,
                                         outputformat='json',
                                         startdepth=0,
                                         enddepth=2000,
                                         interval=100)

# A data plot in PNG
plot_data = reader.plot_scalar_png(log_id)

# Data plots in HTML, only plots the first 6 log ids
plot_data = reader.plot_scalars_html(log_id_list)

12. Using the image log ids can produce images of NVCL cores

ilog_list = reader.get_mosaic_imglogs(ds.dataset_id)
for ilog in ilog_list:
    img = reader.get_mosaic_image(ilog.log_id)

ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
for ilog in ilog_list:
    # Either HTML or JPG
    img = reader.get_tray_thumb_html(ds.dataset_id, ilog.log_id)
    img = reader.get_tray_thumb_jpg(ilog.log_id)

# Use either 'get_tray_thumb_imglogs()' or 'get_tray_imglogs()'
ilog_list = reader.get_tray_thumb_imglogs(ds.dataset_id)
ilog_list = reader.get_tray_imglogs(ds.dataset_id)
for ilog in ilog_list:
    depth_list = reader.get_tray_depths(ilog.log_id)
    for depth in depth_list:
        print(depth.sample_no,
              depth.start_value,
              depth.end_value)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvcl_kit-0.1.18.tar.gz (20.8 kB view details)

Uploaded Source

Built Distribution

nvcl_kit-0.1.18-py3-none-any.whl (17.1 kB view details)

Uploaded Python 3

File details

Details for the file nvcl_kit-0.1.18.tar.gz.

File metadata

  • Download URL: nvcl_kit-0.1.18.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for nvcl_kit-0.1.18.tar.gz
Algorithm Hash digest
SHA256 fa04a69bee28b7c82b09c5a2b3eb832146ce538ef0366fb637cce50b198b631e
MD5 7e5992722f490365a0cbfe4658eccdd6
BLAKE2b-256 17abea4bd31cfa86c4d8cb37367a5db89e7ae0de166e6e0e7f3ecd44280bcb03

See more details on using hashes here.

File details

Details for the file nvcl_kit-0.1.18-py3-none-any.whl.

File metadata

  • Download URL: nvcl_kit-0.1.18-py3-none-any.whl
  • Upload date:
  • Size: 17.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.9.1 tqdm/4.43.0 CPython/3.7.6

File hashes

Hashes for nvcl_kit-0.1.18-py3-none-any.whl
Algorithm Hash digest
SHA256 59ce763f7e112e4e4b991915f7f351e2a88de993c8e46a8b3942a60c841df994
MD5 8cf6d3ce2776de410cb103c8d576cb32
BLAKE2b-256 137b94d077cd75892180cec0c0f83cf0f21667c420f1f521a6a4956e994432ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page