Control Nvidia GPU fan in your python script.
Project description
nvfan
A module to control Nvidia Graphic Cards' fan within python. Features:
- set constant fan speed
- set more aggressive fan schedule compared to stock to avoid overhaeting when doing Deep Learning or other computationally intense tasks
Why?
My deep learning rig contains 2 GTX 1080ti graphic cards with no liquid cooling. It takes only a few minutes for the GPUs to hit the thermal threshold of 86°C after I start a training process. Yet, it only uses fans at 50% rate.
This module uses a more aggressive fan speed and therefore avoids overheating, and thus throttling of GPU frequency at around 90° Celsius.
What is special about it?
You only have to add two to three lines to your main Deep Learning python script and then the fan speed is adjusted to keep GPU temperature at max 80° Celsius. When you Deep Learning pipeline exists, the control of the fann speed is automatically given back to the nvidia driver. Hence, fan speed is significantly reduced when finished to reduce noise.
How to use it?
Controlling nvidia gpu fan requires an X
server to be running. To run X
without having a monitor attached to the system requires special config.
Preparation
Setup x config in a shell like below. You may need to use sudo
.
$ nvidia-xconfig --enable-all-gpus --cool-bits=7 --connected-monitor=Monitor0 --allow-empty-initial-configuration --force-generate
Warning: we used --force-generate
flag. A backup of your previous config is saved and is reported as the result of running this function.
Aa manual configuration could look likke this::
$ cat /etc/X11/xorg.conf.d/nv.conf
# start
Section "Device"
Identifier "Device0"
Driver "nvidia"
VendorName "NVIDIA Corporation"
BoardName "GeForce GTX 1080 Ti"
Option "Coolbits" "4"
EndSection
# trail
See also https://wiki.archlinux.org/index.php/NVIDIA/Tips_and_tricks
Run X
I think the best way is to use xinit:
$ xinit &
Leavve this sttep out if you are using a desktoop envirronment like Gnoome, KDE, or similar.
Dependencies
Please make sure nvdia-smi
and nvidia-settings
are installed. The latter usually needs to be installed manually whereas the former is usually included in the nvidia driver package.
Install nvfan
$ pip install nvfan
Usage
You can use command line script:
$ nvfan constant -g 0 -s 60 # sets a constant speed at 60%
Or in your python script:
import nvfan
first_gpu = 0
nvfan.constant(first_gpu, 60)
The above script, puts GPU 0 in constant
mode with 60% speed. You can use aggressive
or driver
modes too:
second_gpu = 1
# In aggressive mode, a small increase in temperature causes a large increase in fan speed.
nvfan.aggressive(second_gpu)
# Give control back to the driver manually. Please note that after execution is finished, this line is automatically called so you don't have to.
nvfan.driver(first_gpu)
nvfan.driver(second_gpu)
Instead of using the module you can use the GPU
class to have more control (i.e. setting custom X11 display, if not set DISPLAY
environment variable is used, or if not set, :0
is used as fallback)
import nvfan
gpu = gpufan.GPU(0, display=":1") # or use default `None` for automatic lookup of display
gpu.aggressive()
You can also omit the first parameter (device
) like so:
import nvfan
gpu = gpufan.GPU() # or use default `None` for automatic lookup of display
gpu.aggressive()
Then all available GPUs are set to aggressive speed.
Decorators
As another syntactic sugar you can annotate functions, which will set the constant/aggressive speed before calling the decorated method and as soon as it returns will give the control back to the nvidia driver:
import time
from nvfan.decorators import constant, aggressive
@constant(percentage=95)
def main():
time.sleep(60)
@aggressive()
def main_agg():
time.sleep(60)
if __name__ == '__main__':
main()
main_agg()
Caution
Use this module at your own risk. The author takes no responsibility and the scripts come with no warranty.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file nvfan-0.4.1.tar.gz
.
File metadata
- Download URL: nvfan-0.4.1.tar.gz
- Upload date:
- Size: 10.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 536426d1a79d23f763bfa442ae577db12f591a452a39bd993c01ac617ea530dd |
|
MD5 | 89891519b681d30ba38914f8f81eb848 |
|
BLAKE2b-256 | 4f1587da726e8f99963c5e3edcbb185f43b43d025767a9e85b30b65f6940feb2 |