Skip to main content


Project description

It provides information about GPUs and their availability for computation.

Often we want to train a ML model on one of GPUs installed on a multi-GPU machine. Since TensorFlow allocates all memory, only one such process can use the GPU at a time. Unfortunately nvidia-smi provides only a text interface with information about GPUs. This packages wraps it with an easier to use CLI and Python interface.

It’s a quick and dirty solution calling nvidia-smi and parsing its output. We can take one or more GPUs availabile for computation based on relative memory usage, ie. it is OK with Xorg taking a few MB.


pip install nvgpu

Usage examples

Command-line interface:

# grab all available GPUs
CUDA_VISIBLE_DEVICES=$(nvgpu available)

# grab at most available GPU
CUDA_VISIBLE_DEVICES=$(nvgpu available -l 1)

Print pretty colored table of devices, availability, users, processes:

$ nvgpu list
    available    type                 users    running_since    pids
--  -----------  -------------------  -------  ---------------  ------
 0  [ ]          GeForce GTX 1070              None
 1  [~]          GeForce GTX 1080 Ti  alice    2 days ago       19028
 2  [~]          GeForce GTX 1080 Ti  bob      13 hours ago     8479
 3  [~]          GeForce GTX 1070     bob      7 days ago       20883
 4  [~]          GeForce GTX 1070     bob      7 days ago       26228
 5  [~]          GeForce GTX 1080 Ti  ?        None             9305
 6  [ ]          GeForce GTX 1080 Ti           None

Python API:

import nvgpu

# ['0', '2']

[{'index': '0',
  'mem_total': 8119,
  'mem_used': 7881,
  'mem_used_percent': 97.06860450794433,
  'type': 'GeForce GTX 1070',
  'uuid': 'GPU-3aa99ee6-4a9f-470e-3798-70aaed942689'},
 {'index': '1',
  'mem_total': 11178,
  'mem_used': 10795,
  'mem_used_percent': 96.57362676686348,
  'type': 'GeForce GTX 1080 Ti',
  'uuid': 'GPU-60410ded-5218-7b06-9c7a-124b77a22447'},
 {'index': '2',
  'mem_total': 11178,
  'mem_used': 10789,
  'mem_used_percent': 96.51994990159241,
  'type': 'GeForce GTX 1080 Ti',
  'uuid': 'GPU-d0a77bd4-cc70-ca82-54d6-4e2018cfdca6'},



  • order GPUs by priority (decreasing power, decreasing free memory)

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvgpu-0.2.tar.gz (4.2 kB view hashes)

Uploaded Source

Built Distribution

nvgpu-0.2-py2.py3-none-any.whl (6.8 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page