Skip to main content

CUDNN FrontEnd python library

Project description

cuDNN FrontEnd(FE) API

Introduction

The cuDNN FrontEnd(FE) API is a C++ header-only library that wraps the cuDNN C backend API. Both the FE and backend APIs are entry points to the same set of functionality that is commonly referred to as the "graph API".

While there are two entry points to the graph API (i.e. backend and frontend), it is expected that most users will use the FE API. Reasons being:

  • FE API is less verbose without loss of control. All functionality accessible through the backend API is also accessible through the FE API.
  • FE API adds functionality on top of the backend API, like errata filters and autotuning.

Also, for those using backend API, FE API source and samples can serve as reference implementation.

In FE v1.0 API, users can describe multiple operations that form subgraph through a persistent cudnn_frontend::graph::Graph object. Unlike the FE v0.x API, users don't need to worry about specifying shapes and sizes of the intermediate virtual tensors. FE v1.0 API extends the groundwork of earlier versions and introduces a new set of APIs to further simplify the workflow. For detailed information of FE v1.0 API, see README.FE.1.0.md.

Additionally, FE v1.0 API provides python bindings to all API through pybind11. It is recommended that new users of cuDNN start with the frontend v1.0 API. See samples/cpp and samples/python for more details on its usage.

Usage

For c++ users, in order to include the entire library, include the cudnn_frontend header file include/cudnn_frontend.h into your compilation unit.

For Python users, run import cudnn

Build:

Dependencies

With the release of v1.0, we are bumping up the minimum supported cudnn version to 8.5.0

cuda can be downloaded from the nvidia dev-zone

cudnn can be installed from - nvidia dev-zone - pypi wheels

Minimum python version needed 3.6 The python binding compilation requires development package which can be installed by running apt-get install python-dev.

To run the Python samples, you will need the dependencies mentioned in requirements.txt. This can be be installed by running: pip install -r requirements.txt

Python API

pip wheel installation

Download the pip wheel corresponding to your python installation.

pip install nvidia_cudnn_frontend

Source installation:

Install FE python API by running:

pip install -v git+https://github.com/NVIDIA/cudnn-frontend.git

Above command picks cuda and cudnn from default system paths.

To provide a custom CUDA installation path, use environment variable: CUDAToolkit_ROOT.
To provide a custom CUDNN installation path, use environment variable: CUDNN_PATH.

Checking the installation

To test whether installation is successful, run:

pytest test/python_fe

NOTE: Only v1.0 API is exposed via python bindings.

C++ API

C++ API is header only library.

The root CMakeLists.txt can be used as reference to include the cudnn_frontend in your project's build system.

Building samples

The following compilation steps are only required for building the samples.

Provide CUDA installation path according to: https://cmake.org/cmake/help/latest/module/FindCUDAToolkit.html

Provide CUDNN installation path using CUDNN_PATH env variable or cmake parameter.

CUDNN_PATH has the cudnn installation:

  • Headers are in CUDNN_PATH/include.
  • Libraries are in CUDNN_PATH/lib or CUDNN_PATH/lib64 or CUDNN_PATH/lib/x64.

For a in-source build,

mkdir build
cd build
cmake -DCUDNN_PATH=/path/to/cudnn -DCUDAToolkit_ROOT=/path/to/cuda  ../
cmake --build . -j16
bin/samples

To skip building samples, use -DCUDNN_FRONTEND_BUILD_SAMPLES=OFF.

To skip building python bindings, use -DCUDNN_FRONTEND_BUILD_PYTHON_BINDINGS=OFF.

In case, you have a stale cmake cache and want to update the cudnn/cuda paths, please delete the cmake cache (or build directory and redo the above steps).

Debugging

For initial debugging, we recommend turning on the cudnn FE logging and checking for warnings and errors. cuDNN Frontend API logging records execution flow through cuDNN frontend API. This functionality is disabled by default, and can be enabled through methods described in this section.

Method 1: Using Environment Variables:

Environment variables CUDNN_FRONTEND_LOG_INFO=0 CUDNN_FRONTEND_LOG_INFO=1
CUDNN_FRONTEND_LOG_FILE not set No Logging No Logging
CUDNN_FRONTEND_LOG_FILE set to stdout or stderr No Logging Logging to cout or cerr
CUDNN_FRONTEND_LOG_FILE set to filename.txt No Logging Logging to the filename

Method 2: Using API calls:

Calling cudnn_frontend::isLoggingEnabled() = true|false has same effect of setting the environment variable. Calling cudnn_frontend::getStream() = stream_name can be used to assign the output stream directly.

For further debugging, please turn on the cudnn backend logs described here https://docs.nvidia.com/deeplearning/cudnn/latest/reference/troubleshooting.html#error-reporting-and-api-logging

Documentation

Contributing:

Please refer to our contribution guide

Feedback

Support, resources, and information about cuDNN can be found online at https://developer.nvidia.com/cudnn.

Also, bugs and RFEs can be reported in the issues section.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nvidia_cudnn_frontend-1.5.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

nvidia_cudnn_frontend-1.5.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

nvidia_cudnn_frontend-1.5.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

nvidia_cudnn_frontend-1.5.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

nvidia_cudnn_frontend-1.5.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.27+ x86-64 manylinux: glibc 2.28+ x86-64

File details

Details for the file nvidia_cudnn_frontend-1.5.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_cudnn_frontend-1.5.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 655eeff6f782679ea64320a7591acfe00b8f3b140bf847e2d0699254a10b057b
MD5 029f806a234b128fbb34adb254f7f008
BLAKE2b-256 938b8fda45c6cf760872b5570997b04ac1ec6909efabd8862bff497e0b40b1cd

See more details on using hashes here.

File details

Details for the file nvidia_cudnn_frontend-1.5.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_cudnn_frontend-1.5.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3bbe12aa6d9212ec9dc7bcaf53c251152e4af26e52d92471b49d2e724f5b3b49
MD5 998ec08ca3707fe40b523b6689d20737
BLAKE2b-256 9c57870e27420ac8c79ba91deabe55db5822d2a1626315d49b80f333bb57ee90

See more details on using hashes here.

File details

Details for the file nvidia_cudnn_frontend-1.5.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_cudnn_frontend-1.5.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cc6d38b46216fee69ce46cda74cdd85aa3d49ec62472c2219ae58a32ceab90ef
MD5 dac8078f7373e83e61ded9cd8604a47f
BLAKE2b-256 8dbbd2195ad484287c9d687bd8aece7bbf6fe06c206432aeec9a9a131324619c

See more details on using hashes here.

File details

Details for the file nvidia_cudnn_frontend-1.5.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_cudnn_frontend-1.5.0-cp39-cp39-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5549ea19b16a53c7a9de4d295942c9a90bdb0a99c6aa296453ed219533ce577e
MD5 89d1422bab96ad9b8b36354cd2815a62
BLAKE2b-256 fa76077e115a7b4159a9107520e41de91e91921a5a21856be0afc54fb899d76b

See more details on using hashes here.

File details

Details for the file nvidia_cudnn_frontend-1.5.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for nvidia_cudnn_frontend-1.5.0-cp38-cp38-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e3457aba0c7bb5855e9d0e1c0f07e02410bba25701441dfbe966116ad4cd4b0c
MD5 6c0ba239ace6ef4b24722e98ad33c0cd
BLAKE2b-256 8c7a95ee785c0033ce27ab5dbe7507beb265295b938806896c8786582bc21bde

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page