Skip to main content

A deep learning framework for AI-driven multi-physics systems

Project description

Modulus Symbolic (Beta)

Project Status: Active – The project has reached a stable, usable state and is being actively developed. GitHub Code style: black

Modulus Symbolic (Modulus Sym) provides pythonic APIs, algorithms and utilities to be used with Modulus core, to explicitly physics inform the model training. This includes symbolic APIs for PDEs, domain sampling and PDE-based residuals.

It also provides higher level abstraction to compose a training loop from specification of the geometry, PDEs and constraints like boundary conditions using simple symbolic APIs. Please refer to the Lid Driven cavity that illustrates the concept. Additional information can be found in the Modulus documentation.

Users of Modulus versions older than 23.05 can refer to the migration guide for updating to the latest version.

Modulus Packages

  • Modulus (Beta): Open-source deep-learning framework for building, training, and fine-tuning deep learning models using state-of-the-art Physics-ML methods.
  • Modulus Symbolic (Beta): Framework providing pythonic APIs, algorithms and utilities to be used with Modulus core to physics inform model training as well as higher level abstraction for domain experts.

Domain Specific Packages

  • Earth-2 MIP (Beta): Python framework to enable climate researchers and scientists to explore and experiment with AI models for weather and climate.

Installation

PyPi

The recommended method for installing the latest version of Modulus Symbolic is using PyPi:

pip install nvidia-modulus.sym

Note, the above method only works for x86/amd64 based architectures. For installing Modulus Sym on Arm based systems using pip, Install VTK from source as shown here and then install Modulus-Sym and other dependencies

pip install nvidia-modulus.sym --no-deps
pip install "hydra-core>=1.2.0" "termcolor>=2.1.1" "chaospy>=4.3.7" "Cython==0.29.28" "numpy-stl==2.16.3" "opencv-python==4.5.5.64" \
    "scikit-learn==1.0.2" "symengine>=0.10.0" "sympy==1.12" "timm>=1.0.3" "torch-optimizer==0.3.0" "transforms3d==0.3.1" \
    "typing==3.7.4.3" "pillow==10.0.1" "notebook==6.4.12" "mistune==2.0.3" "pint==0.19.2" "tensorboard>=2.8.0"

Container

The recommended Modulus docker image can be pulled from the NVIDIA Container Registry:

docker pull nvcr.io/nvidia/modulus/modulus:24.04

From Source

Package

For a local build of the Modulus Symbolic Python package from source use:

git clone git@github.com:NVIDIA/modulus-sym.git && cd modulus-sym

pip install --upgrade pip
pip install .

Source Container

To build release image insert next tag and run below:

docker build -t modulus-sym:deploy \
    --build-arg TARGETPLATFORM=linux/amd64 --target deploy -f Dockerfile .

Currently only linux/amd64 and linux/arm64 platforms are supported.

Contributing

For guidance on making a contribution to Modulus, see the contributing guidelines.

Communication

  • Github Discussions: Discuss architectures, implementations, Physics-ML research, etc.
  • GitHub Issues: Bug reports, feature requests, install issues, etc.
  • Modulus Forum: The Modulus Forum hosts an audience of new to moderate level users and developers for general chat, online discussions, collaboration, etc.

License

Modulus Symbolic is provided under the Apache License 2.0, please see LICENSE.txt for full license text.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

nvidia_modulus.sym-1.6.0-py3-none-any.whl (291.6 kB view details)

Uploaded Python 3

File details

Details for the file nvidia_modulus.sym-1.6.0-py3-none-any.whl.

File metadata

File hashes

Hashes for nvidia_modulus.sym-1.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cd966df428347f459d09d55e2fd72fcfdfd0ecbdf8f4981f44f4ed6042997dc6
MD5 0f3f9a0d1db1c6d84d936b7c9e97876a
BLAKE2b-256 928ab886e684bbc4bf87371061d32fc2d8320585f480435c421f79c7ea530514

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page