Skip to main content

No project description provided

Project description

nvidia-smi2

A tool for enriching the output of nvidia-smi.

Alt text

Usage

Install

pip install nvidia-smi2

Run

nvidia-smi2 [-l [length]] [-u [username]]
  print GPU utilization with usernames and CPU stats for each GPU-utilizing process

  -l|--command-length [length]     Print longer part of the commandline. If `length'
                                   is provided, use it as the commandline length,
                                   otherwise print first 100 characters.
  -c|--color                       Colorize the output (green - free GPU, yellow -
                                   moderately used GPU, red - fully used GPU)
  -u|--user                        Name of user to summarize

Or run from src

pip install termcolor
chmod a+x nvidia-htop.py
./nvidia-htop.py [-l [length]] [-u [username]]
  print GPU utilization with usernames and CPU stats for each GPU-utilizing process

  -l|--command-length [length]     Print longer part of the commandline. If `length'
                                   is provided, use it as the commandline length,
                                   otherwise print first 100 characters.
  -c|--color                       Colorize the output (green - free GPU, yellow -
                                   moderately used GPU, red - fully used GPU)
  -u|--user                        Name of user to summarize

Note: for backward compatibility, nvidia-smi | ./nvidia-htop.py [-l [length]] [-u [username]] is also supported.

Note: running inside a container (docker, singularity, ...), nvidia-smi can only see processes running in the container.

Example output

rnd@rnd:~$ nvidia-smi2 -l
Wed Jul 12 10:41:16 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| 55%   73C    P2    88W / 280W |   3248MiB / 11176MiB |     64%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  On   | 00000000:02:00.0 Off |                  N/A |
| 59%   67C    P2    91W / 280W |   9397MiB / 11178MiB |      7%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|  GPU   PID     USER    GPU MEM  %CPU  %MEM      TIME  COMMAND                                                                                               |
|    0  1242     root       9MiB   0.0   0.0  175 days  /usr/lib/xorg/Xorg vt1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  |
|    0  1966      gdm       4MiB   0.0   0.0  175 days  /usr/bin/gnome-shell                                                                                  |
|    0  6963  anonym1    2365MiB   2.9   3.1    7 days  python train.py                                                                                       |
|    0  8200     root     135MiB   0.1   0.4  117 days  python3 app.py xxxxxxxxx                                                                              |
|    0 12474      rnd     135MiB   0.1   0.8   11 days  python3 main.py xxxxxxxxxxx                                                                           |
|    0 19369     root     455MiB  62.4   2.5   20 days  python3 read_rtsp.py --path_stream xxxxxxxxxxxxxxxxxx                                                 |
|    0 30502     root     135MiB   0.0   1.8  16:24:10  python build_index.py                                                                                 |
|    1  1242     root       4MiB   0.0   0.0  175 days  /usr/lib/xorg/Xorg vt1 -displayfd 3 -auth xxxxxxx                                                     |
|    1 19422     root     455MiB  86.7   3.7   20 days  python3 read_rtsp.py --path_stream xxxxxxxxxxxxxxxxxxxxxxx                                            |
|    1 25255  anonym2    6917MiB   128   4.3  22:30:29  python train_image_classifier.py xxxx                                                                 |
|    1 27877     root    2017MiB   9.4   1.4   15 days  python consumer.py                                                                                    |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|      USER    TOTAL GPU MEM             TOTAL %CPU  TOTAL %MEM  |
+----------------------------------------------------------------+
|      root            13MiB                    0.0         0.0  |
|       gdm             4MiB                    0.0         0.1  |
|    anony1          1086MiB                    0.5         3.2  |
|    anony2          6930MiB                  478.8         9.5  |
|    anony3          7418MiB                  111.0         5.4  |
|----------------------------------------------------------------|
| all-users         15451MiB / 22528MiB       590.3        18.2  |
+----------------------------------------------------------------+
rnd@rnd:~$ nvidia-smi2 -l -u root
Wed Jul 12 10:51:06 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.57.02    Driver Version: 470.57.02    CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  On   | 00000000:01:00.0 Off |                  N/A |
| 58%   69C    P2   106W / 280W |   3248MiB / 11176MiB |      5%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
|   1  NVIDIA GeForce ...  On   | 00000000:02:00.0 Off |                  N/A |
| 59%   65C    P2    80W / 280W |   9397MiB / 11178MiB |      7%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+

+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|  GPU   PID     USER    GPU MEM  %CPU  %MEM      TIME  COMMAND                                                                                               |
|    0  1242     root       9MiB   0.0   0.0  175 days  /usr/lib/xorg/Xorg vt1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx  |
|    0  8200     root     135MiB   0.1   0.4  117 days  python3 app.py xxxxxxxxx                                                                              |
|    0 19369     root     455MiB  62.4   2.5   20 days  python3 read_rtsp.py --path_stream xxxxxxxxxxxxxxxxxx                                                 |
|    0 30502     root     135MiB   0.0   1.8  16:33:59  python build_index.py                                                                                 |
|    1  1242     root       4MiB   0.0   0.0  175 days  /usr/lib/xorg/Xorg vt1 -displayfd 3 -auth xxxxxxx                                                     |
|    1 19422     root     455MiB  86.7   3.7   20 days  python3 read_rtsp.py --path_stream xxxxxxxxxxxxxxxxxxxxxxx                                            |
|    1 27877     root    2017MiB   9.4   2.2   15 days  python consumer.py                                                                                    |
+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|      USER    TOTAL GPU MEM             TOTAL %CPU  TOTAL %MEM  |
+----------------------------------------------------------------+
|      root          3210MiB                  158.6        10.6  |
|----------------------------------------------------------------|
| all-users         15451MiB / 22528MiB       590.3        18.2  |
+----------------------------------------------------------------+

Reference

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nvidia_smi2-0.0.2.post6.tar.gz (5.7 kB view details)

Uploaded Source

Built Distribution

nvidia_smi2-0.0.2.post6-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file nvidia_smi2-0.0.2.post6.tar.gz.

File metadata

  • Download URL: nvidia_smi2-0.0.2.post6.tar.gz
  • Upload date:
  • Size: 5.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for nvidia_smi2-0.0.2.post6.tar.gz
Algorithm Hash digest
SHA256 7caa4524c635d241328c1d8eadac2c3a01b927c533784bcb27257919940d3f0b
MD5 973d9ffa3c01f21ad6a1d768d69480fe
BLAKE2b-256 c2300f61716c0c10265e1b2436a6954f3320d4fef4807cca72115cb19d405021

See more details on using hashes here.

File details

Details for the file nvidia_smi2-0.0.2.post6-py3-none-any.whl.

File metadata

File hashes

Hashes for nvidia_smi2-0.0.2.post6-py3-none-any.whl
Algorithm Hash digest
SHA256 7bacd4983f3b36467fcf5b6988dddffba8fbb205362756a7d3c9cda5c95dfe1d
MD5 79d18b3739e38e3ff5523d49aebfc894
BLAKE2b-256 ff3a6f41c09a28684475cba999e71929ef2539c68812fe03b9278d139724e03e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page