NWhy project using pybind11 and CMake
Project description
The NWhy library provides Pybind11 APIs for analysis of complex data set intepret as hypergraphs.
To install in an Anaconda environment
>>> conda create -n <env name> python=3.8
Then activate the environment
>>> conda activate <env name>
Install Intel Threading Building Blocks(TBB)
To install TBB:
>>> conda install tbb
If a local TBB has been install, we can specify TBBROOT
>>> export TBBROOT=/opt/tbb/
Install using Pip
For installation:
>>> pip install nwhy
For upgrade:
>>> pip install nwhy --upgrade
or
>>> pip install nwhy -U
Quick test with import
For quick test:
>>> python -c "import nwhy"
If there is no import error, then installation is done.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
File details
Details for the file nwhy-0.0.15-cp39-cp39-manylinux2014_x86_64.whl
.
File metadata
- Download URL: nwhy-0.0.15-cp39-cp39-manylinux2014_x86_64.whl
- Upload date:
- Size: 185.3 kB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 42ee76c94e7aaf6a228cec457ba090511354596c7c35cf738814e59d1cfa012c |
|
MD5 | 38273fd2f7e6908bfa9f62b9fce30fbf |
|
BLAKE2b-256 | 7b75cbf529a4d375ac33a7fd0c26dcf1be3575c7781b0d73e0f882200c5aeda3 |
File details
Details for the file nwhy-0.0.15-cp39-cp39-macosx_10_15_x86_64.whl
.
File metadata
- Download URL: nwhy-0.0.15-cp39-cp39-macosx_10_15_x86_64.whl
- Upload date:
- Size: 200.1 kB
- Tags: CPython 3.9, macOS 10.15+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4de0646fb93fae7d17b31847ae4a8c331f55e8c6ed21c568e3cb49e32bea3e9 |
|
MD5 | 174bcf43bbe7c3701d42e8c75fc6d4f4 |
|
BLAKE2b-256 | 8c09e9d61800779ba3551fa7053575465453ec38bf32208cbf48381382adbcfa |