Skip to main content

Fetch and process data from the National Water Model

Project description

nwm

Documentation Status MIT license Binder

Python library to fetch and process the National Water Model (NWM) NetCDF datasets.

If you have any suggestion to improve the current function, please create a github issue here.

Get Started

Install package

$ pip install nwm

Download NWM Data

You can launch binder to test and run the code below.

Example 1: use NwmHs class to download data (Recommended method)
import matplotlib.pyplot as plt
from nwm import NwmHs

# get data from National water model HydroShare App
nwm_data = NwmHs()
dataset = nwm_data.get_data(archive='harvey', config='short_range', geom='channel_rt', variable='streamflow',
                           comid=[5781915], init_time=0, start_date='2017-08-23')

# show metadata
dataset.attrs

# plot data
plt.figure(figsize=(9,5))
dataset.plot()
plt.xlabel('Year 2017')
plt.ylabel('{} ({})'.format(dataset.variable_name,dataset.variable_unit))
plt.title('Short range streamflow forecast for Channel 5781915 during Harvey Hurricane Event')

ts_plot

Example 2: use BmiNwmHs class to download data (Demonstration of how to use BMI)
import matplotlib.pyplot as plt
import numpy as np
import cftime

from nwm import BmiNwmHs


# initiate a data component
data_comp = BmiNwmHs()
data_comp.initialize('config_file.yaml')

# get variable info
var_name = data_comp.get_output_var_names()[0]
var_unit = data_comp.get_var_units(var_name)
print(' variable_name: {}\n var_unit: {}\n'.format(var_name, var_unit))

# get time info
start_time = data_comp.get_start_time()
end_time = data_comp.get_end_time()
time_step = data_comp.get_time_step()
time_unit = data_comp.get_time_units()
time_steps = int((end_time - start_time)/time_step) + 1
print(' start_time:{}\n end_time:{}\n time_step:{}\n time_unit:{}\n time_steps:{}\n'.format(start_time, end_time, time_step, time_unit, time_steps))

# initiate numpy arrays to store data
stream_value = np.empty(1)
stream_array = np.empty(time_steps)
cftime_array = np.empty(time_steps)

for i in range(0, time_steps):
    data_comp.get_value(var_name, stream_value)
    stream_array[i] = stream_value
    cftime_array[i] = data_comp.get_current_time()
    data_comp.update()

time_array = cftime.num2date(cftime_array, time_unit, only_use_cftime_datetimes=False, only_use_python_datetimes=True)

# plot data
plt.figure(figsize=(9,5))
plt.plot(time_array, stream_array)
plt.xlabel('Year 2017')
plt.ylabel('{} ({})'.format(var_name, var_unit))
plt.title('Short range streamflow forecast for Channel 5781915 during Harvey Hurricane Event')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

nwm-0.1.3-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file nwm-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: nwm-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for nwm-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 3a5d30df7d1fe4b408c1c8f98d6069d6b5765f426f655a01adcf281fd209dda0
MD5 275adbbb5a8625f3120d63a3a73f3de8
BLAKE2b-256 1313011ec32afb442076882915e8778fd8d021d45e704d12e11547a5b85731c0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page