Skip to main content

draws RNS,QNX and BNX curves and their auc

Project description

nxcurve

Dimensionality reduction ( DR ) is a data transformation process which provides a low-dimensional ( attribute or variable ) representation of high dimensional data sets. This with the following purposes: noise reduction, storage space reduction, data visualization, efficient data processing and to concentrate the important information in fewer variables than the original set. A performance visual measure in DM is topology preservation. Quality curves RNX, proposed by Lee and Verleysen, evaluates performance generating a graphical representation of topology preservation. Nowadays there is a tool for topology conservation evaluation of DM algorithms, developed also by Lee and Verleysen (2009) but this tool is implemented only in Matlab. Here a problem arises because Matlab is limited and cannot be implemented in other technologies. here, we are going to implement, in python, a software evaluation module of curves RNX in order to be used in other technologies.

Installation

Use the package manager pip to install nxcurve.

pip install nxcurve

Usage

from sklearn import manifold, datasets  # datasets
from nxcurve import quality_curve

n_comp = 2        # number of components to be reduced
n_nei = 20        # nearest neighbors
nsamples = 2000   # number of points (samples)

# Creating manifold 
X, color = datasets.make_swiss_roll(n_samples=nsamples)

# Performing dimensionality reduction
X_r, err = manifold.locally_linear_embedding(X, n_neighbors=n_nei, n_components=n_comp)

# Drawing RNX curve
quality_curve(X,X_r,n_nei,'r',True)

"""
    input: X original data, X_r reduced data, n_neighbors, option, graph
    output: _NX vector, area under the curve and plot if graph == True
    Any character in the following list generates a new figure: (opt)
    q: Q_NX(K)
    b: N_NX(K)
    r: R_NX(K)
"""

Features

  • RNX curve and area under the curve
  • QNX curve and area under the curve
  • BNX curve and area under the curve

Development

  • Grahp for the coranking matrix
  • LCMC from a coranking matrix (local continuity meta criterion)
  • Error Handling

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

License


MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nxcurve-0.6.2.tar.gz (6.7 kB view details)

Uploaded Source

Built Distribution

nxcurve-0.6.2-py3-none-any.whl (6.6 kB view details)

Uploaded Python 3

File details

Details for the file nxcurve-0.6.2.tar.gz.

File metadata

  • Download URL: nxcurve-0.6.2.tar.gz
  • Upload date:
  • Size: 6.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for nxcurve-0.6.2.tar.gz
Algorithm Hash digest
SHA256 aeadf43ed8a2ce3e31a729253c37cff201929e13231023947c7b05277c9b3bee
MD5 8c881103779e28fe91e290afb61bc5bf
BLAKE2b-256 8c2e09bbd803fb6e2b5c59f4489dc33cfcbaba48db5f8c2f2b0ec497749184d5

See more details on using hashes here.

File details

Details for the file nxcurve-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: nxcurve-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 6.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.56.2 CPython/3.9.1

File hashes

Hashes for nxcurve-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 9800fee704fbad7b6522e647afeb2a593badb7e90fe174573aa60d53a6ba8121
MD5 f6d6eeaebedd2da4ea292c8e4902d406
BLAKE2b-256 6151231b454ab1ad4b0d661bc62b0d6315632276546b0c8a990e4b96391bc476

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page