Skip to main content

Nyctibius is a Python package for gathering and consolidating socio-demographic data.

Project description

Nyctibius - Streamlining sociodemographic data harmonizing.

en es License: MIT R-CMD-check Codecov test coverage lifecycle-concept

The Python package Nyctibius is designed to streamline the complex task of gathering and consolidating sociodemographic data from various sources into a cohesive relational database. Nyctibius empowers users to effortlessly unify custom data sets from diverse socio-demographic sources, ensuring that they can work with up-to-date and comprehensive information in a seamless manner. This package facilitates the process of creating a harmonized repository of socio-demographic data, simplifying data management and analysis for users across various domains.

Features

  • Extraction:

    • Seamlessly retrieve data from online data sources through web scraping, as well as from local files.
    • Support for various data formats, including .csv, .xlsx, .xls, .txt, .sav, and compressed files, ensuring versatility in sourcing information.
  • Transformation:

    • Consolidating extracted data into pandas DataFrame.
    • Optimizing the transformation process of large files.
      • Implement parallel processing for large files.
      • Use efficient data structures to reduce memory footprint.
    • Effectively manage data inconsistencies and discrepancies for enhanced accuracy.
      • Apply anomaly detection algorithms.
  • Load:

    • Consolidating transformed data into a cohesive relational database.
  • Query:

    • Conduct precise queries and apply transformations to meet specific criteria.
  • AI Query & Visualization:

    • Using natural language input to query data (Answers from values to subsets)
    • Using natural language input to create simple visualizations of data

Who should use Nyctibius?

Nyctibius is ideal for data analysts, scientists, and researchers who frequently handle large volumes of data from varied sources and are looking for a streamlined way to consolidate, query, and visualize their data. It's also a great tool for developers working on projects that require the integration of disparate data sets into a single, manageable format. Additionally, business intelligence professionals and decision-makers will find Nyctibius invaluable for generating insights through natural language queries and visualizations, making complex data more accessible and actionable. In essence, anyone looking to simplify their data workflows, from extraction to visualization, and leverage AI for natural language querying will benefit greatly from using Nyctibius.

Installation

For full documentation, please refer to the Nyctibius documentation.

You can install the Nyctibius package using pip. Make sure you have Python 3.x installed on your system; the package requires Python version 3.7 or higher.

pip install nyctibius

Usage

To use the Nyctibius package, follow these steps:

  1. Import the package in your Python script:

    from nyctibius import Harmonizer
    
  2. Create an instance of the Harmonizer class:

    harmonizer = Harmonizer()
    
  3. Extract data from online sources and create a list of data information:

    url = 'https://www.example.com'
    depth = 0
    ext = 'csv'
    list_datainfo = harmonizer.extract(url=url, depth=depth, ext=ext)
    harmonizer = Harmonizer(list_datainfo)
    
  4. Load the data from the list of data information and merge it into a relational database:

    results = harmonizer.load()
    
  5. Import the modifier module and create an instance of the Modifier class:

    from nyctibius.db.modifier import Modifier
    modifier = Modifier(db_path='../../data/output/nyctibius.db')
    
  6. Perfom modifications:

    tables = modifier.get_tables()
    print(tables)
    
  7. Import the querier module and create an instance of the Querier class:

    from nyctibius.db.querier import Querier
    querier = Querier(db_path='data/output/nyctibius.db')
    
  8. Perform queries:

    df = querier.select(table="Estructura CHC_2017").execute()
    print(df)
    

Supported Data Sources

The package supports the following sources:

  • Colombian microdata links from National Administrative Department of Statistics (DANE)
  • Local files
  • Open data sources

Please note that accessing data from these organizations may require authentication or specific credentials. Make sure you have the necessary permissions before using the library.

License

The Nyctibius package is open-source and released under the MIT License. Feel free to use, modify, and distribute this library in accordance with the terms of the license.

Acknowledgements

We would like to thank the following entities for providing the data used and the economic financial support for the development of this package:

  • National Administrative Department of Statistics (DANE)
  • Barcelona Supercomputing Center (BSC)
  • Universidad de los Andes

Contact

For any questions, suggestions, or feedback regarding the package please contact:

Erick lozano, Email: es.lozano@uniandes.edu.co

Diego Irreño, Email: dirreno@unal.edu.co

Disclaimer

This library is not officially affiliated with or endorsed by any of the mentioned official organizations. The data provided by this library is sourced from publicly available information and may not always reflect the most current or accurate data. Please verify the information with the respective official sources for critical use cases.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

nyctibius-0.0.13.tar.gz (29.6 kB view details)

Uploaded Source

Built Distribution

nyctibius-0.0.13-py3-none-any.whl (28.5 kB view details)

Uploaded Python 3

File details

Details for the file nyctibius-0.0.13.tar.gz.

File metadata

  • Download URL: nyctibius-0.0.13.tar.gz
  • Upload date:
  • Size: 29.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for nyctibius-0.0.13.tar.gz
Algorithm Hash digest
SHA256 c1c64d977a4333d74a717e21ce5ecd04eb1cb7a3622575bba168c09f24510d43
MD5 38e29663ef3901eb3e31e77c7dbfd6a6
BLAKE2b-256 3fbdeed2da5b1df6f879db547e42e83cf726ebde5949337a831f8198c6f4fe2a

See more details on using hashes here.

File details

Details for the file nyctibius-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: nyctibius-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 28.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.9

File hashes

Hashes for nyctibius-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 919d6552e9f983989d932e92c2cc8b91a1607a83c32fff196f7bef54eea8a9bc
MD5 567288ee94d0e62bfeb088a03d4be787
BLAKE2b-256 98a6af19808cd071f56bc7c9e28d1a0f0d19efbdbc291a395c0fc2412f30b47b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page